

M. Galvagno, G. Wohlfahrt, E. Cremonese, U. Morra di Cella

Environmental Protection Agency of Aosta Valley - ARPA VdA Institute of Ecology - University of Innsbruck

EGU General Assembly, 10 April 2013

- At most FLUXNET sites, the net ecosystem CO₂ exchange is evaluated by means of eddy covariance (EC) using a set of instruments on a single tower
- Assumptions: flat, horizontally homogeneous terrain and stationary conditions
- Nighttime problem: low turbulent mixing, stable stratification, advective fluxes.
 - \rightarrow Underestimation of nighttime net CO_2 exchange

Brumbley Laper Meteomology (2009) 146: 63: 64

© Springer 2009
DOI 16.0073/9594-664-700-5

COMPARING CO₂ STORAGE AND ADVECTION CONDITIONS AT NIGHT AT DIFFERENT CARBOEUROFLEX SITES

M. AUBINET*, P. BERBGIER*, CH. BERNHOFER*, A. CESCATTI*, C. FEIGENWINTER*, A. GRANIER*, THE GEÉNWALD*, K. HAVRANKOVA*, B. HINTEGEL B. LONGBOOZ*, B. MARCOLLA*, L. MONTAGNAN*** and P. SEDLAK*

Available online at www.sciencedirect.com

Importance of advection in the atmospheric CO₂ exchanges of an alpine forest

Barbara Marcolla ^{a, b}, Alessandro Cescatti ^a, Leonardo Montagnani ^{b, c}, Giovanni Manca ^a, Ginther Kerschbaumer ^b, Stefano Minerbi ^c

THE INFLUENCE OF ADVECTION ON THE SHORT TERM $\mathrm{CO}_{\mathcal{D}}$ BUDGET IN AND ABOVE A FOREST CANOPY

C. FEIGENWINTER^{1,8}, C. BERNHOFER¹ and R. VOGT¹

*besituse of Mesonology, Climatelegy and Remote Straing, University of Basel, Klimpeberstrams 27, Ch-4696 Basel, Switzerland, *business of Madelogy and Materielogy, Devalue University of Technology, Cornery

Christian Feigenwinter 4-5.*, Christian Bernhofer 5, User Eichelmann 5

Comparison of horizontal and vertical advective CO_2 fluxes at three forest sites

Certain Progression — ", Certain attention; or de Antonios.

Bernard Belieneth", Martin Hertel", Dailber Janous', Olaf Kölle",
Fredrik Lagergenet, Anders Lindroth', Selfano Miterbil', Uto Medersus³,
Meelis Müller', Leenarde Montapanif', Rosuld Gusch', Certain Rebussin',
Futrik Vestin', Michel Yernoux'', Marcelo Zeri'', Waldernar Ziegler'', Manc Aubinet''

steep mountain slope forest in Switzerland 5. Etzold, N. Buchmann, and W. Eugater

A comment on the paper by Lee (1998): "On micrometeorological observations of surface-air exchange over tall vegetation"

John Finniean"

Contribution of advection to the carbon

budget measured by eddy covariance at a

Mass Balance Terms

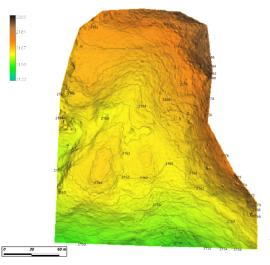
 $NEE=F_c+F_s+F_{ha}+F_{va}$

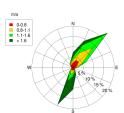
 F_c =vertical turbulent flux, F_s =Storage term, F_{ba} =horizontal advection, F_{va} =vertical advection

- Eddy covariance measurements are challenging in non-ideal terrains, where mountain ecosystems are often naturally situated.
- No information exist on the role of advection at sites with short canopies

Kaserstattalm (Hammerle et al 2007)

Torgnon Larch Forest (Migliavacca et al 2008)


Study site


- Torgnon: Northwestern Italian Alps (Aosta Valley)
- Subalpine grassland (2160 m asl)
- EC measurements since 2008
- Maximum canopy height is 20 cm.
- Not located on a steep slope
- heterogeneous microtopography

Study site

NE winds during nighttime SSW winds during daytime

DEM 20 cm resolution Isolines 2 m Δ elevation \sim 30 m

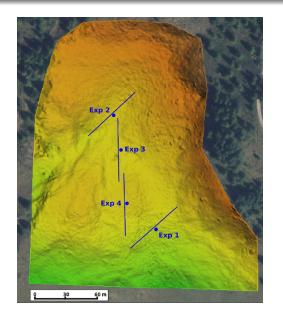
Methods

Four control volumes where sequentially investigated during the growing season 2012:


1. Eddy covariance:

- 3D sonic anemometer (CSAT3)
- Open-path IRGA (LI7500) placed at 1.65 m agl
- additional 2D anemometer placed at 0.90 m agl
- 10 Hz data processed according to commonly accepted procedures
- Planar-fit method (Wilczak et al, 2001)

2. Profiling system and Chambers:


- Two vertical CO₂ profiles
- Three measurement levels each (0.30, 0.80, 1.65 m agl)
- 30 meters uphill and downhill the EC tower along the different transects
- Three ecosystem respiration automated chambers (LI8100, LICOR)

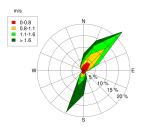
Experimental scheme

Data processing: mass balance terms

Eddy flux

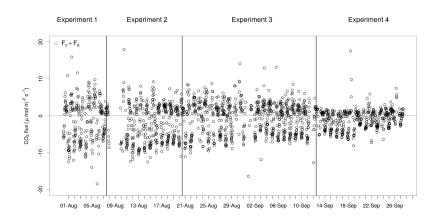
$$F_c = \overline{\rho_a} \overline{w'c'}$$

Storage term

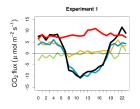

$$F_s = \int_0^{1.65} \frac{\partial \overline{c}}{\partial t} dz$$

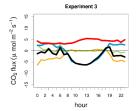
Horizontal advection

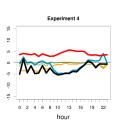
$$F_{ha} = \int_0^{1.65} \overline{u}(z) \frac{\partial \overline{c}(z)}{\partial x} dz$$

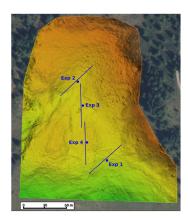

Vertical advection

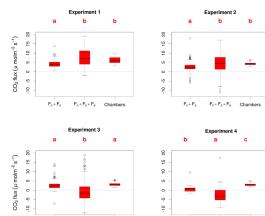
$$F_{va} = \overline{w}_{h1.65} (\overline{c}_{h1.65} - [\overline{c}])$$

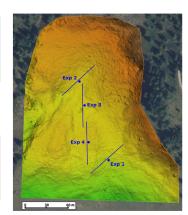

Results: Eddy fluxes




Results: mass balance terms - mean diurnal variation

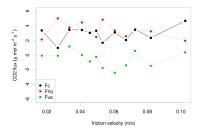


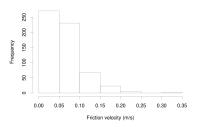




Results: mass balance terms - nighttime values

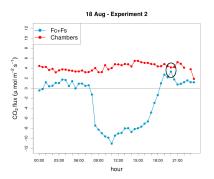
 $F_c + F_\kappa$


F_c+F_s+F_a Chambers



F_c+F_s

How to correct the nighttime problem?



It was not possible to identify an objective friction velocity threshold

Alternative solutions

• Using data when the maximum of F_c+F_s is observed in the evening to develop relationships between NEE and independent variables, such as soil temperature (Van Gorsel et al 2007)

- 2 To add a constant advective offset to $F_c + F_s$
- § It appears that there are places, even in this kind of complex topography, where F_c+F_s captures most of the actual nighttime respiration (e.g. control volume 3).

Conclusions

The main findings of this study are:

- F_c+F_s considerably underestimates nighttime ecosystem respiration as measured by the automated ecosystem chambers.
- Advection measurements indicate that horizontal, and to a lesser degree, vertical advection are important terms of the full mass balance during nighttime at the grassland site. During daytime advection appears to play a negligible role.
- The NEE calculated by taking into account advection generally closely resembles nighttime ecosystem respiration as measured with chambers.
- For two of the control volumes the order of magnitude of NEE computed with the mass balance approach $(F_c+F_s+F_{ha}+F_{va})$ was not compatible with biotic fluxes measured by respiration chambers (as previously described for other sites e.g. Aubinet et al 2010).
- 6 Ongoing work: testing the best correction approach
- 6 future 3D Experiments are planned to improve advection measurements.

THANKS FOR YOUR ATTENTION

m.galvagno@arpa.vda.it www.arpa.vda.it www.biomet.co.at

