

On Extrapolating Nighttime Ecosystem Respiration To Daytime Conditions and Implications for Gross Primary Productivity Estimation

Marta Galvagno¹, Georg Wohlfahrt²

 $^1{\rm Environmental}$ Protection Agency of Aosta Valley - ARPA VdA $^2{\rm Institute}$ of Ecology - University of Innsbruck

GPP = Reco - NEE

- GPP = Gross Primary Productivity
- Reco = Ecosystem Respiration
- $\mathsf{NEE} = \mathsf{Net} \ \mathsf{Ecosystem} \ \mathsf{Exchange}$

Background Objectives Methods Results Conclusions

Eddy covariance flux partitioning algorithms

GPP = Reco - NEE

- GPP = Gross Primary Productivity
- Reco = Ecosystem Respiration
- $\mathsf{NEE} = \mathsf{Net} \ \mathsf{Ecosystem} \ \mathsf{Exchange}$

GPP = Reco - NEE

- GPP = Gross Primary Productivity
- Reco = Ecosystem Respiration
- $\mathsf{NEE} = \mathsf{Net} \ \mathsf{Ecosystem} \ \mathsf{Exchange}$

GPP = Reco - NEE

- GPP = Gross Primary Productivity
- Reco = Ecosystem Respiration
- $\mathsf{NEE} = \mathsf{Net} \ \mathsf{Ecosystem} \ \mathsf{Exchange}$

GPP = Reco - NEE

- GPP = Gross Primary Productivity
- Reco = Ecosystem Respiration
- $\mathsf{NEE} = \mathsf{Net} \ \mathsf{Ecosystem} \ \mathsf{Exchange}$

Overestimation of daytime Reco

GPP = Reco - NEE

- GPP = Gross Primary Productivity
- Reco = Ecosystem Respiration
- $\mathsf{NEE} = \mathsf{Net} \ \mathsf{Ecosystem} \ \mathsf{Exchange}$

Overestimation of daytime Reco

- (i) Extrapolation from lower to higher temperature range.
- (*ii*) Different contributions of respiration components such as soil (roots, microorganisms) and aboveground vegetation.
- (iii) Differing temperature sensitivities.
- (iv) Circadian changes in specific respiration rates,

Temperature

H1: Unique relationship during day and night
H2: The temperature response is the same, but Reco in the common temperature range is offset
H3: The temperature response is

different

H4: Combination of H2 and H3

Objectives

✓ Does nighttime NEE provide unbiased estimates of daytime Reco?

✓ If this is not the case, which is the effect on daytime Reco and the resulting uncertainty of GPP?

To this end...

✓ ...we quantified dark Reco during nighttime and daytime conditions using automated ecosystem-chambers in a mountain grassland

Objectives

- ✓ Does nighttime NEE provide unbiased estimates of daytime Reco?
- ✓ If this is not the case, which is the effect on daytime Reco and the resulting uncertainty of GPP?

To this end...

✓ ...we quantified dark Reco during nighttime and daytime conditions using automated ecosystem-chambers in a mountain grassland

Objectives

- ✓ Does nighttime NEE provide unbiased estimates of daytime Reco?
- ✓ If this is not the case, which is the effect on daytime Reco and the resulting uncertainty of GPP?

To this end...

 \checkmark ...we quantified dark Reco during nighttime and daytime conditions using automated ecosystem-chambers in a mountain grassland

Study site

- Short-statured vegetation at a subalpine grassland (2150 m asl, Torgnon, Italy)
- 4 opaque ecosystem chambers (LI8100-104) + multiplexer
- Short closure time (\sim 2 min)
- Continuous measurements (half-hourly) during the entire season (June-October)

Automated ecosystem chambers method

Measurements of dark Reco during daytime \neq

∠ Measurements of daytime Reco

Atkin et al. Aust. J. Plant Physiol. 1998

Data overview

Relationships between Reco and temperature

Daytime Reco simulated with nighttime parameterisation

Simulated RECO/measured RECO	Simulated gCm^{-2} vs Measured gCm^{-2}
TA: 1.20	387 - 322
TS: 0.96	310 - 322

overestimation

Differences between measured Night and Day RECO

0

12

10

Mean diurnal variation of measured Reco and driving temperatures

Air temperature:

Higher Reco during night at the same temperature range

Soil temperature:

Higher Reco during day at the

same temperature range

Simulated daily patterns of temperature, soil respiration and above ground respiration

Simulated daily pattern of Temperature...

$$Ta,s=T_{avg} + A_o e^{(-z/D)} sin(pi/12(t-8) - z/D)$$

- T_{avg} = average daily temperature (degC)
- $A_o = \text{temperature amplitude (degC)}$
- z = soil depth(m)
- D = damping depth(m)

...Rsoil and Rag

$$\mathsf{Reco} = \mathsf{R}_{@T_{ref}} e^{E_0(T_s - T_{ref})} + R_{@T_{ref}} e^{E_0(T_a - T_{ref})}$$

$$\begin{aligned} & \mathsf{R}_{@T_{ref}} e^{E_0(T_s - T_{ref})} = \mathsf{Rsoil} \\ & \mathsf{R}_{@T_{ref}} e^{E_0(T_{ag} - T_{ref})} = \mathsf{Rag} \end{aligned}$$

Take home message

TA as main driver of Reco led to an overestimation of $\sim 12\%$ of the daily measured Reco, while TS led to an underestimation of $\sim 2\%$

 \Rightarrow

The differential bias may be explained by be the shift in phase and amplitude of TA and TS and the **Rsoil** vs. **Rag** contributions during nighttime and daytime

Thanks for your attention

http://www.biomet.co.at

http://www.arpa.vda.it/climate-change-impacts

Acknowledgments:

Mirco Migliavacca¹, Edoardo Cremonese², Gianluca Filippa², Michel Isabellon²

¹ Max Planck Institute for Biogeochemistry, Jena, Germany

² Environmental Protection Agency of Aosta Valley - ARPA VdA

Weighted model

dark-adaptation experiment

