Institute of Ecology

The many meanings of gross photosynthesis and their implication for photosynthesis research from leaf to globe

Georg Wohlfahrt^{1,2}, Lianhong Gu³

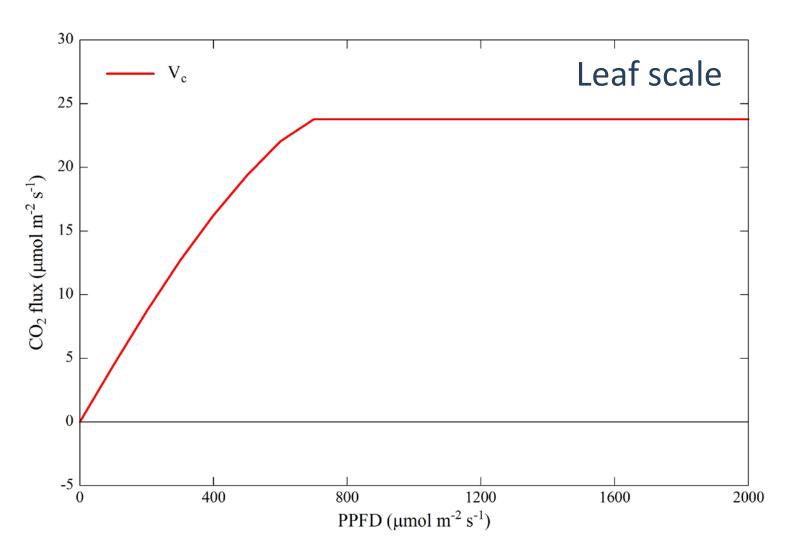
¹ Institute of Ecology, University of Innsbruck, ² Applied Remote Sensing/Alpine Environment, European Academy of Bolzano, ³ Environmental Sciences Division and Climate Change Science Institute, Oak Ridge National Laboratory

Institute of Ecology

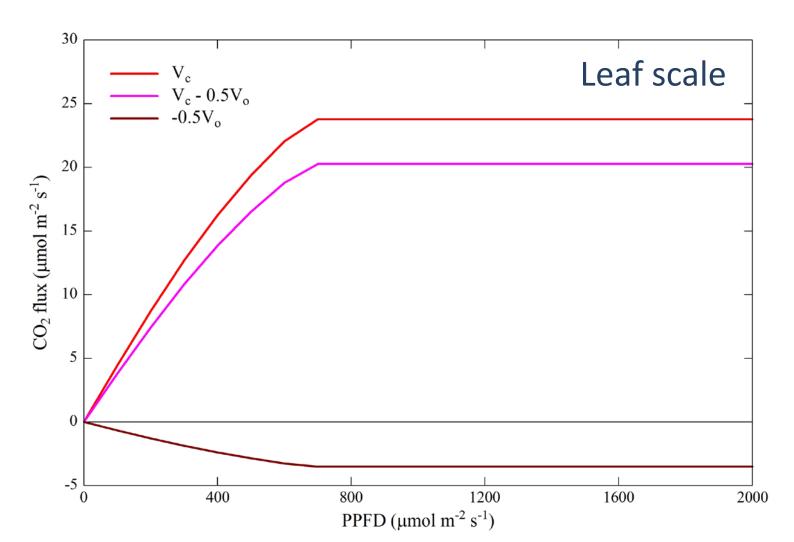
Expose yourself!

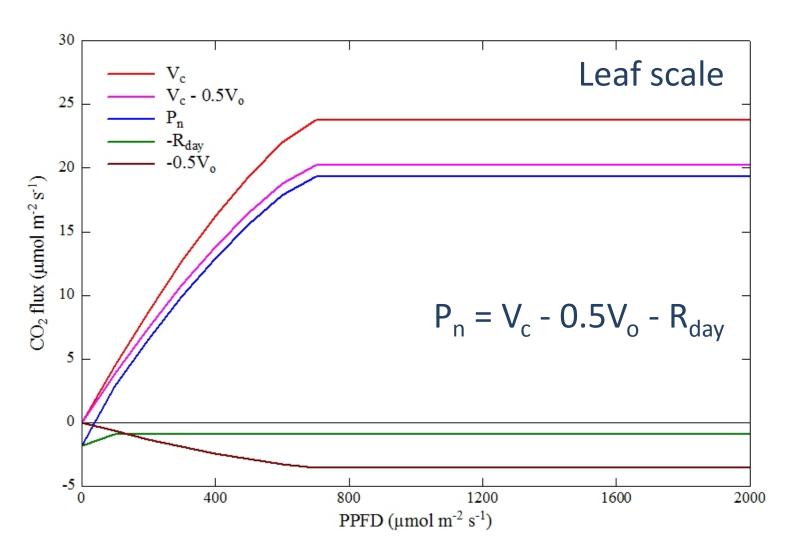
Put up your hands up if you think you know the definition of gross photosynthesis.

Institute of Ecology



Background





Institute of Ecology

$$P_{n} = V_{c} - 0.5V_{o} - R_{day}$$
(a)
(b)

Gross photosynthesis is defined as

- (a) V_c (i.e. carboxylation only) or
- (b) V_c-0.5V_o (i.e. carboxylation minus photorespiration)

Which definition is correct?

Institute of Ecology

Ecosystems (2006) 9: 1041–1050 DOI: 10.1007/s10021-005-0105-7

Reconciling Carbon-cycle Concepts, Terminology, and Methods

F. S. Chapin III,^{1*} G. M. Woodwell,² J. T. Randerson,³ E. B. Rastetter,⁴ G. M. Lovett,⁵ D. D. Baldocchi,⁶ D. A. Clark,⁷ M. E. Harmon,⁸ D. S. Schimel,⁹ R. Valentini,¹⁰ C. Wirth,¹¹ J. D. Aber,¹² J. J. Cole,⁵ M. L. Goulden,³ J. W. Harden,¹³ M. Heimann,¹¹ R. W. Howarth,¹⁴ P. A. Matson,¹⁵ A. D. McGuire,¹⁶ J. M. Melillo,⁴ H. A. Mooney,¹⁷ J. C. Neff,¹⁸ R. A. Houghton,² M. L. Pace,⁵ M. G. Ryan,¹⁸ S. W. Running,¹⁹ O. E. Sala,²⁰ W. H. Schlesinger,²¹ and E.-D. Schulze¹¹

"... gross photosynthesis is the sum of gross carbon fixation by autotrophic carbon-fixing tissues per unit area and time ..."

Institute of Ecology

Definitions

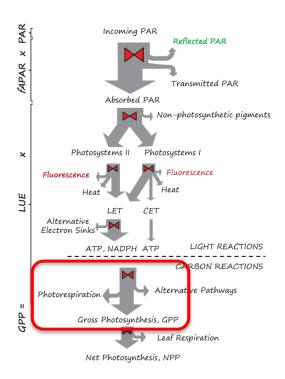
Journal of Experimental Botany, Vol. 65, No. 15, pp. 4065–4095, 2014 doi:10.1093/jxb/eru191 Advance Access publication 27 May, 2014

DARWIN REVIEW

Linking chlorophyll a fluorescence to photosynthesis for remote sensing applications: mechanisms and challenges

Albert Porcar-Castell^{1,*}, Esa Tyystjärvi², Jon Atherton¹, Christiaan van der Tol³, Jaume Flexas⁴, Erhard E. Pfündel⁵, Jose Moreno⁶, Christian Frankenberg⁷ and Joseph A. Berry⁸

Institute of Ecology



$$GPP = V_c - 0.5V_o$$

$$GPP = V_c$$

The ATP and NADPH generated by the light reactions are utilized by the Calvin–Benson cycle to synthesize sugars by assimilating CO_2 (gross photosynthetic assimilation or A_G) (Fig. 1). Net photosynthetic assimilation (A_N) is the quantity that is measurable by gas exchange systems and relates to 'true' or gross photosynthesis (A_G) as:

$$A_{\rm N} = A_{\rm G} - PR - R_{\rm d} \tag{2}$$

where R_d is the rate of mitochondrial day respiration and PR is the rate of photorespiration (Ogren, 1984). In photorespi-

two different definitions ... in the same paper ...

Institute of Ecology

$$P_{n} = V_{c} - 0.5V_{o} - R_{day}$$
(a)
(b)

Older definitions

(a) V_c: 'true' photosynthesis

(b) V_c-0.5V_o: 'apparent' photosynthesis

Institute of Ecology

Eddy covariance flux partitioning

$$NEP_{n} = -(R_{dark} + R_{non-leaf})$$

$$NEP_{d} = V_{c}-0.5V_{o} - (R_{day} + R_{non-leaf})$$

Problem #1: because $R_{day} < R_{dark}$, NEP_n overestimates daytime ecosystem respiration

Institute of Ecology

Agricultural and Forest Meteorology 130 (2005) 13-25

www.elsevier.com/locate/agrformet

Estimation of daytime ecosystem respiration to determine gross primary production of a mountain meadow

Georg Wohlfahrt*, Michael Bahn, Alois Haslwanter, Christian Newesely, Alexander Cernusca

"... suggests an overestimation of RECO by 11-17% ..."

Institute of Ecology

Eddy covariance flux partitioning

$$NEP_n = -(R_{dark} + R_{non-leaf})$$

$$NEP_{d} = V_{d} - 0.5V_{o} \cdot (R_{day} + R_{non-leaf})$$

Problem #2: NEP_n carries no information about photorespiration we thus can only estimate V_c -0.5 V_o , but not V_c , i.e.

$$V_c$$
-0.5 V_o = NEP_d + (R_{day} + $R_{non-leaf}$)

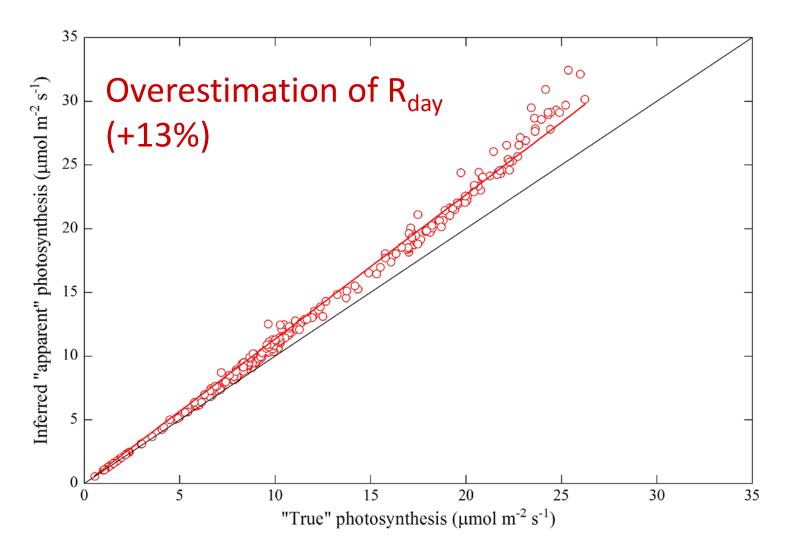
Institute of Ecology

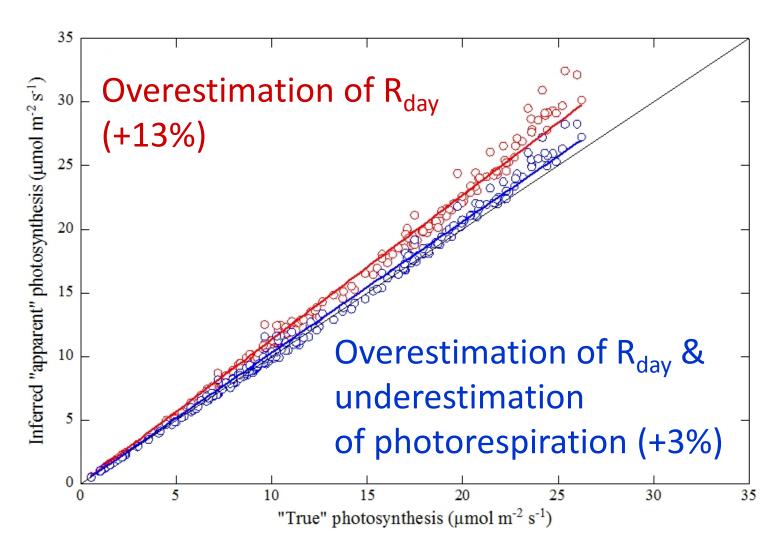
Eddy covariance flux partitioning

#1: NEP_n overestimates daytime ecosystem respiration

#2: NEP_n carries no information about photorespiration

=> Inferred GPP may be closer to true (V_c) than apparent $(V_c-0.5V_0)$ photosynthesis





- The term gross photosynthesis has been and is used with different meanings by different communities.
- Eddy covariance flux partitioning conceptually allows estimating the 'apparent' photosynthesis, that is carboxylation minus photorespiration.
- However, the resulting estimate is closer to the 'true' photosynthesis, that is carboxylation only.
- Given these and other complications, alternative ways of exploiting the strong contrast between nighttime and daytime CO₂ exchange should be explored.
- Finally, we advocate to use the term gross photosynthesis and GPP for carboxylation minus photorespiration.