

The inconvenient truth about eddy covariance flux partitioning and implications for global carbon cycle estimates

Georg Wohlfahrt¹ and Marta Galvagno²

¹ Universität Innsbruck, Austria, ² ARPA Valle d'Aosta, Italy

- The purpose of flux partitioning algorithms is to disentangle the gross fluxes underlying the net ecosystem production (NEP), that is gross primary productivity (GPP) and ecosystem respiration (ER).
- □ While nighttime NEP carries a "clear" respiration signal, the estimation of both GPP and ER is complicated by their co-occurrence during daylight conditions.
- GPP and ER thus cannot be measured directly, but must be indirectly inferred by some model.

Reichstein et al. (2005)

Background

Beer et al. (2010)

univers

Background

inivers

Ln(Respiration) (µmol m⁻² s⁻¹) o o o o o o o

Flux partitioning revisited

$$R_{eco} = R_{s} + R_{ag}$$
$$R_{s} = f(T_{s})$$
$$R_{ag} = f(T_{a})$$

-2 0 2 Ts-Tref (degC)

6

4

-4

Flux partitioning revisited

"dark" R_{eco}

Flux partitioning revisited

University of Innsbruck

Institute of Ecology

Flux partitioning revisited

	R ²	MEF	RMSE	ME
T _{air}	0.66	0.31	1.76	1.07
T _{soil}	0.61	0.60	1.35	-0.20
Tweighted	0.70	0.55	1.42	0.65
Averaged output	0.70	0.64	1.27	-0.44
Unmixing	0.70	0.69	1.18	0.16

- ☐ Flux partitioning using either air or soil temperature results in biased estimates of daytime (dark) ER.
- ☐ The magnitude of bias is difficult to predict due to the interaction of several biophysical factors. It is definitely site-specific!
- ☐ It is thus critical to report the uncertainty of partitioned quantities and ultimately to move towards multi-model GPP and ER products, similar to current practice in climate science.
- "Unmixing" of above- and below-ground respiration components worked reasonably well for chamber data – can it be applied to noisy, u_{*}-filtered and gap-infected nighttime EC data?

biomet.co.at

Georg Wohlfahrt

Institute of Ecology University of Innsbruck

georg.wohlfahrt@uibk.ac.at

15