

Georg Wohlfahrt

Institut für Ökologie, Universität Innsbruck, Austria

- **%** Definition of gross primary productivity (GPP)
- **%** Why bother with the unmeasurable?
- **%** Review: multiple constraints on GPP (the blind men theme)
- \mathfrak{H} Eddy covariance CO₂ flux partitioning revisited
- **℃** Carbonyl sulfide (COS) the silver bullet?
- **#** Conclusions

(a) V_c : carboxylation rate, gross photosynthesis, 'true' photosynthesis

(b) V_c-0.5V_o: 'apparent' photosynthesis, GPP

(c) V_c -0.5 V_o - R_{day} : net photosynthesis

Wohlfahrt & Gu (2015)

Wohlfahrt & Gu (2015)

Wohlfahrt & Gu (2015)

GPP can only be estimated by indirect methods.

GPP can only be estimated by indirect methods.

- **%** The main motivation for estimating GPP experimentally is that carbon cycle models simulate uptake (photosynthesis) and release (ecosystem respiration) of CO_2 separately and thus require separate calibration data.
- **\Re** The net CO₂ exchange being the difference between two large fluxes (GPP and ER) is very sensitive to partial errors.
- Calibration against NEP is problematic due compensating errors which, because of contrasting drivers of photosynthesis and respiration, may cause unrealistic predictions under changing climatic conditions.

(i) Photochemical reflectance index (PRI)

(ii) Sun-induced fluorescence (SIF)

(iii) Carbonyl sulfide (COS-FP)

(iv) Isotopic flux partitioning (Iso-FP)

(v) CO₂ flux partitioning (I and II)

Reichstein et al. (2005)

Beer et al. (2010)

University of Innsbruck Institute of Ecology CO₂ flux partitioning II Model **Measurements** GPP $NEP_n = -ER_n @T_{ref} \cdot e^{\beta \cdot T} \quad GPP = NEP_d + ER_d @T_{ref} \cdot e^{\beta \cdot T}$ NEP GPP = f(PAR, VPD) $NEP_d = GPP - ER_d@T_{ref} \cdot e^{\beta \cdot T}$

Lasslop et al. (2010)

... and several other auxiliary eqs.

Net CO₂ flux Isoflux

- $\delta_A = \delta_a \Delta$
- $\Delta = a + (b a) C_i/C_a$

Farquhar et al. (1982)

 $(F_A) = g_c (C_a - C_i)$ Fick's law; big-leaf approximation

 $g_c = f(\lambda E, H, R_{net}, r_a, VPD, T_a)$ Penman-Monteith

Yakir & Wang (1996), Bowling et al. (2001), Ogee et al. (2003),

Wehr & Saleska (2015)

Wehr & Saleska (2015)

Wohlfahrt et al. (2012)

а

COS flux partitioning

Time

inivers innsbru

Asaf et al. (2013)

data from Asaf et al. (2013; cotton) and Billesbach et al. (2014; winter wheat)

Photochemical reflectance index (PRI)

Gamon (2015)

 $\mathsf{PRI} = (\rho_d - \rho_r) / (\rho_d + \rho_r)$

 $\rho_{\rm d}$ = 531nm, $\rho_{\rm r}$ = 570nm

Gamon et al. (1992)

Hall et al. (2008)

Hall et al. (2008)

universit innsbruc

Hilker et al. (2010)

PRI

Hilker et al. (2014)

univers innsbru

Sun-induced fluorescence

Net Photosynthesis, NPP

Porcar-Castell et al. (2014)

Sun-induced fluorescence

 $SPEC_{Full}$

Rascher et al. (2008)

Cogliati et al. (2015)

Lee et al. (2013)

14 (App 12 p daily SIF daily GPP 0 Daily mean SIF 10 Sr 0.6 mw/m GPP(g 4 2 0 0.2 (a 0.0 Daily mean APAR (umol/m²/sec) APAR 1200 800 400 (b) 0.0014 Sunny 0.0012 Cloudy 0.0010 0.0008 0.0006 0.0004 0.0002 (c) LUE (umol CO₂/umol photon) 0.06 0.0000 0.05 ۸ Sunny Cloudy 0.04 0.03 0.02 0.01 0.00 (d) 100 Sunny 80 LUE/SIF YIELD Cloudy 60 40 20 (e) 1.0 0 Vegetation indices NDVI EVI (f) 0.2 180 200 320 220 240 300 260 280 Day of Year

Yang et al. (2015)

Guanter et al. (2012)

Porcar-Castell et al. (2014)

Schlau-Cohen & Berry (2015)

#1: because R_{day}<R_{dark}, NEP_n overestimates daytime ecosystem respiration

University of Innsbruck
Institute of Ecology
CO₂-FP revisited

$$R_{day} = R_{dark} \cdot k$$

$$NEP_n = -(R_{dark} + R_{non-leaf})$$

$$f(T)$$

$$R_{day} = R_{dark} \cdot k$$

#1: because R_{day}<R_{dark}, NEP_n overestimates daytime ecosystem respiration
#2: NEP_n carries no information about photorespiration

$$R_{eco} = R_{s} + R_{ag}$$
$$R_{s} = f(T_{s})$$
$$R_{ag} = f(T_{a})$$

CO₂-FP revisited

"dark" R_{eco}

CO₂-FP revisited

CO₂-FP revisited

CO₂-FP revisited

	• Iansbruck		
	Elevation (m)	970	3931 #4
	MAT (degC)	6.5	
A CHURCH CARDEN PROVIDE	MAP (mm)	852	
	Management	cut 3x	
			4.0

Basic abiotic and biotic drivers

Latent and sensible heat and momentum fluxes N₂O fluxes GHG CH₄ fluxes Carbon budget CO₂ fluxes VOC fluxes COS Air quality

CO fluxes

O₃ fluxes

COS flux partitioning

26.06.2015 - 27.06.2015

Kitz et al. (submitted)

Kitz et al. (submitted)

Kitz et al. (submitted)

Kitz et al. (submitted)

Spielmann et al. (in preparation)

Example for inversion of Lagrangian turbulent transport model (around midday)

Spielmann et al. (in preparation)

COS flux partitioning

Spielmann et al. (in preparation)

	Constructions
	Conclusions

	Level of complexity	Level of understanding	Wider applicability
CO ₂ flux partitioning	L	Μ	Н
Isotopic flux partitioning	Н	Μ	L
COS flux partitioning	Μ	L	L
Sun-induced fluorescence	Н	L	VH
Photochemical reflectance index	Μ	L	VH

L ... low, M ... medium, H ... high, VH ... very high

- And so these men of Indostan
 Disputed loud and long,
 - Each in his own opinion
 - Exceeding stiff and strong,
 - Though each was partly in the right,
 - And all were in the wrong!

The blind man and the Elephant (John Godfrey Saxe, 1816-1887)