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These results show evidence for Explicitly modeling residual distributions of 3 datasets for constraining model parameters revealed violations of SLS assumptions and indicated model structural deficits.
heavy-tailed errors and reveal mod- The GL function is thus recommended over the SLS approach or Box-Cox transformations, as they typically do not account for heavy tailed residuals, as presented here. Fur-
el structural deficits. thermore, this method is seen as a pragmatatic approach treating measurement, input data and model structural errors in a lumped manner.
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