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a b s t r a c t

The vegetation component in climate models has advanced since the late 1960s from a uniform pre-
scription of surface parameters to plant functional types (PFTs). PFTs are used in global land-surface
models to provide parameter values for every model grid cell. With a simple photosynthesis model we
derive parameters for all site years within the Fluxnet eddy covariance data set. We compare the model
parameters within and between PFTs and statistically group the sites. Fluxnet data is used to validate the
photosynthesis model parameter variation within a PFT classification.

Our major result is that model parameters appear more variable than assumed in PFTs. Simulated fluxes
are of higher quality when model parameters of individual sites or site years are used. A simplification
with less variation in model parameters results in poorer simulations. This indicates that a PFT classifica-
ddy covariance
luxnet

tion introduces uncertainty in the variation of the photosynthesis and transpiration fluxes. Statistically
derived groups of sites with comparable model parameters do not share common vegetation types or
climates.

A simple PFT classification does not reflect the real photosynthesis and transpiration variation. Although
site year parameters give the best predictions, the parameters are generally too specific to be used in a
global study. The site year parameters can be further used to explore the possibilities of alternative

classification schemes.

. Introduction

The specification of the land surface component of climate mod-
ls has evolved through four major steps over the past four decades.
he first generation in the late 1960s had a uniform prescrip-
ion of surface parameters (see reviews by Sellers et al., 1997;
itman, 2003), while the second generation in the 1980s intro-
uced the concept of plant functional types (PFTs) to describe the
ffects of spatially varying vegetation on the surface energy bal-

nce (e.g. Sellers et al., 1986; Dickinson et al., 1986). In the third
eneration of models vegetation is simulated dynamically rather
han being prescribed (Friend and Cox, 1995; Sellers et al., 1997;
oley et al., 1998; Woodward et al., 1998; Cox et al., 2000), while

∗ Corresponding author.
E-mail address: margriet.groenendijk@falw.vu.nl (M. Groenendijk).

168-1923/$ – see front matter © 2010 Elsevier B.V. All rights reserved.
oi:10.1016/j.agrformet.2010.08.013
© 2010 Elsevier B.V. All rights reserved.

the latest models couple vegetation dynamics to the carbon and
nitrogen cycles (Thornton et al., 2009; Yang et al., 2009; Zaehle
and Friend, 2010), and include processes for emissions of reactive
trace gases, vegetation–fire interactions and crop–biogeochemistry
interactions (Arneth et al., 2010).

To run these land-surface models globally, it is necessary to pro-
vide parameter values for every model grid cell, and typically this
is done by assigning a unique parameter set for each PFT. Early PFT
classifications were developed for calculating the surface energy
and water balance and were largely based on broad classes of vege-
tation. Later these PFTs were applied to deduce the carbon balance
of the land surface, even though a number of carbon cycle pro-

cesses might not run parallel to the energy and water processes
upon which the original classifications were based. More recently
PFT classifications have been derived following either a deductive
or an inductive approach (Woodward and Cramer, 1996). Exam-
ples of PFT classifications derived using the deductive approach are

dx.doi.org/10.1016/j.agrformet.2010.08.013
http://www.sciencedirect.com/science/journal/01681923
http://www.elsevier.com/locate/agrformet
mailto:margriet.groenendijk@falw.vu.nl
dx.doi.org/10.1016/j.agrformet.2010.08.013
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Table 1
Parameters used in the photosynthesis and transpiration model. Values given are
the default or initial* values within the model optimization.

Parameter Description Value

vcm,25 Carboxylation capacity (�mol m−2 s−1) 100*
jm,25 Electron transport rate, (�mol m−2 s−1) 300*
˛ Quantum yield (mol mol−1) 0.7*
� Water use efficiency (mol mol−1) 8000*
O O2 concentration (mbar) 210
Tref Reference temperature for photosynthesis (K) 298.15
Kc,25 Kinetic coefficient for CO2 at Tref (�bar) 460
Ko,25 Kinetic coefficient for O2 at Tref (mbar) 330
Ekc Activation energy for CO2 (J mol−1) 59,356

missing input variables were excluded from the analysis. The 101
selected sites contain 453 site years of which 349 years contain suf-
M. Groenendijk et al. / Agricultural a

resented by Box (1996), Bonan et al. (2002) and Sitch et al. (2003).
ere the criteria for PFTs are based on climatic limitations such as

emperature, precipitation and length of the growing season. These
FTs are subjectively classified based on a general understanding
f processes. With the inductive approach (Woodward and Cramer,
996) PFTs are derived from sets of observations or experimental
esults e.g. through statistical clustering with climatic variables and
egetation traits (Chapin et al., 1996; Wang and Price, 2007).

The assumption that parameters in carbon exchange models can
onveniently be allocated to PFTs appears to contradict observed
radual transitions between different ecosystem types. Kleidon et
l. (2007) show that the strict separation of vegetation into less than
ight PFTs may lead to artificial multiple steady-states in a model
f the Earth’s climate–vegetation system depending on the number
f PFTs used. Measurements on individual leaves indicate a gradual
ransition in vegetation characteristics. Leaf traits are inter-related
.g., maximum photosynthetic capacity, maintenance respiration,
itrogen concentration, leaf life span and specific leaf area (ratio of

eaf surface area to leaf mass) (Reich et al., 1997; Bonan et al., 2002;
einzer, 2003; Wright et al., 2004). Harrison et al. (2010) therefore

uggest using these continuous traits for the development of a new
egetation classification.

On the global scale it is a challenging task to provide suffi-
ient data for a complete PFT classification, because a large number
f observations are needed for each PFT (Wang and Price, 2007).
any studies have used eddy covariance data from Fluxnet (a

lobal network of sites), showing the variation in carbon and water
uxes between vegetation types and along climate gradients (e.g.,
aldocchi, 2008; Law et al., 2002; Friend et al., 2007; Luyssaert et
l., 2007; Stöckli et al., 2008; Stoy et al., 2009; Beer et al., 2009;
uan et al., 2009; Williams et al., 2009). The eddy covariance data
an also be used to derive model parameters (e.g., Reichstein et
l., 2003b; van Dijk and Dolman, 2004; Knorr and Kattge, 2005;
aupach et al., 2005; Owen et al., 2007; Richardson et al., 2007;
ang et al., 2007; Thum et al., 2008). However, hardly any of these

tudies have attempted to derive model parameters for key carbon
ycle processes such as photosynthesis for the full set of data.

This study uses a simple vegetation model to derive the param-
ters for all site years and vegetation types within the Fluxnet
atabase. We compare the set of model parameters within and
etween PFTs and group the sites statistically. We combine the
eductive and inductive PFT classifications to give insight into the
ariation of model parameters. We address the following specific
uestions: (1) what is the variability of parameter values for a
et of conventionally defined PFTs, (2) how well are fluxes sim-
lated using parameter values for each PFT compared to using
ite-calibrated values at diurnal, seasonal and annual time scales,
3) if using mean or median values provides unsatisfactory results,
s it sufficient to refine the classification scheme and, (4) if this
s unsatisfactory, does a cluster analysis of parameters provide a
atisfactory solution?

. Methodology

.1. Model description

The photosynthesis model of Farquhar et al. (1980) is widely
sed in vegetation models (e.g., Sellers et al., 1996; Arora, 2002;
itch et al., 2003; Krinner et al., 2005; Rayner et al., 2005). Individ-
al applications of this model differ in the influence they ascribe to

nvironmental factors, the scaling from leaf to ecosystem and the
ay how the model is assigned to different PFTs. The simple vege-

ation model used in this study is based on the equations derived
y Cowan (1977) and Farquhar et al. (1980). The model includes
esponses of photosynthesis and transpiration to air temperature,
Eko Activation energy for O2 (J mol−1) 35,948
Ejm Activation energy for jm (J mol−1) 45,000
Evcm Activation energy for vcm (J mol−1) 58,520

photosynthetically active radiation, vapor pressure deficit and soil
water content. The model parameters are assumed to represent the
relationship between nutrients and vegetation characteristics, and
the adaptation to local climatic conditions.

The main parameters in this model are vcm,25, jm,25, ˛ and �
(Table 1). vcm,25 is the rate of carboxylation mediated by the enzyme
Rubisco, jm,25 is the maximum potential electron transport rate and
˛ is the quantum yield. � defines the ratio between water loss (tran-
spiration) and CO2 assimilation (photosynthesis) as a function of
stomatal conductance (gs) as proposed in the optimality hypoth-
esis which states that plants optimize their stomatal conductance
to maximize photosynthesis for a given amount of transpiration
(Cowan, 1977):

� = ıE/ıgs

ıA/ıgs
(1)

This stomatal conductance model was successfully used to repro-
duce observed ecosystem carbon and water fluxes by Arneth et
al. (2002, 2006), van der Tol et al. (2007, 2008), Mercado et al.
(2009) and Schymanski et al. (2009). Schymanski et al. (2007) com-
pared the use of this model with the stomatal conductance model of
Leuning (1995) and concluded that both models performed equally
well in reproducing observed transpiration rates. A complete model
description with scaling from the leaf to the ecosystem scale and
temperature responses is presented in Appendix A.

2.2. Observations

The Fluxnet database contains fluxes measured with the eddy
covariance technique (Aubinet et al., 2000) at more than 200 loca-
tions worldwide. All data is processed in a harmonized manner
within the Fluxnet project (Baldocchi et al., 2001; Baldocchi, 2008)
as described by Papale et al. (2006), Reichstein et al. (2005), Moffat
et al. (2007) and Papale and Valentini (2003). The data used here
were retrieved from the database in April 2008.1 A complete list of
the sites used is given in Appendix B; Table 2 lists the PFTs used.
These sites were selected based on data availability. To apply the
model for photosynthesis (A) and transpiration (E) fluxes requires
the following variables: Net Ecosystem Exchange (NEE), Latent Heat
Flux (LE), vapor pressure deficit (VPD), air temperature (Ta), global
radiation (Rg), leaf area index (LAI) and soil water content (�). Sites
with data gaps of more than 50% during the growing season or
ficient observations (not gap-filled) to simulate the fluxes. For 57
site years there were no LAI data available, mainly because there

1 www.fluxdata.org, dataset DS2.

http://www.fluxdata.org
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Table 2
Number of Fluxnet sites used in this study within plant functional types as classes of vegetation and climate.

Arctic Boreal Subtropical Mediterranean Temperate Temperate continental Tropical Total

Cropland 2 3 5
Closed shrubland 1 1
Deciduous broadleaf forest 2 6 6 4 18
Evergreen broadleaf forest 2 1 4 7
Evergreen needleleaf forest 17 9 10 4 40
Grassland 1 3 13 17
Mixed Forest 2 2 3 7
Open shrubland 1 1 2
Savanna 1 1 2
Wetland 1 1
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Woody Savanna

Total 1 20 27

ere no remotely sensed observations before 2000, and for 57 (dif-
erent) site years soil water content data was unavailable.

LAI is derived from the MODIS database and is used as a proxy
or phenology (ORNL DAAC, 2009). This database contains 8-day
omposite values of LAI for each site based on 7 km × 7 km data
ets centered around the sites. From these pixels the average is cal-
ulated from observations with no clouds and no presence of snow
r ice. The 8-day composites are linearly interpolated to determine
aily values.

The observed carbon flux from eddy covariance represents the
et exchange of carbon between ecosystem and atmosphere. The
bserved flux (Fc) plus a term representing storage within the veg-
tation is assumed to be equal to NEE. Nighttime NEE is assumed to
e equal to ecosystem respiration (Re). Within the Fluxnet database
he observed NEE is partitioned into gross primary production (GPP)
nd Re. Re is determined from a temperature function of nighttime
uxes by using the methodology of Reichstein et al. (2005). In our
tudy this GPP or photosynthesis flux is used.

The model requires the knowledge of the transpiration flux to
stimate model parameters, whereas the observed water vapor flux
LE) is the sum of transpiration and soil evaporation. However, the
atter contributes little to total evaporation when the soil surface is
ry, or when LAI > 2.5, because then little energy is available for
vaporation. It was thus assumed that total evaporation equals
ranspiration when the vegetation is dry, and these periods were
elected by excluding data during days with precipitation and 3
ays thereafter. Using data for several sites showed that estimates
f model parameters remained constant with removal of data after
ainfall for 3 or more days.

.3. Model parameter estimation

The model is optimized using the simplex search method
Lagarias et al., 1998). A least squares objective function, or nor-

alized root mean square error is minimized to give the optimal
odel parameters. This is a multi-criteria problem with both pho-

osynthesis and transpiration being parameterized, therefore the
bjective function consists of two parts. The normalized root mean
quare errors (RMSEn) derived from half-hourly observations of the
wo fluxes are added, giving equal weight to both processes:

MSEn =

√
(
∑

(Asim − Aobs)
2)/N

Aobs

+

√
(
∑

(Esim − Eobs)
2)/N

Eobs

(2)
here Asim is simulated photosynthesis, Aobs daytime GPP, Esim sim-
lated transpiration and Eobs observed transpiration. The model
arameters were derived for all sites within the Fluxnet database
r for different groups of site years classified by vegetation type and
limate.
1 1

36 11 6 101

2.4. Grouping sites based on model parameters

The deductive classification is based on an understand-
ing of processes that determine the functioning of vegetation
(Woodward and Cramer, 1996). One example is the classical
grouping of sites into vegetation classes (Table 2). Inductive
classification groups are directly derived from sets of observa-
tions. This approach can be applied with statistical clustering.
Here we use the model parameters to group the sites. This is a
combination of the two classifications, because derived param-
eters and not the direct observations are used to classify the
sites.

Two statistical methods are used and compared, hierarchical
and k-means clustering. Hierarchical clustering groups data by
creating a cluster tree or dendrogram. The tree is a multilevel hier-
archy, where clusters at one level are joined to clusters at the
next level. k-means clustering partitions n observations into k clus-
ters. Parameter values within each cluster are as close to each
other as possible, but as far as possible from values in other clus-
ters. The centre of each cluster is the point to which the sum of
distances from all values in that cluster is minimized. The result
is a set of clusters that are as compact and well-separated as
possible (Seber, 1984). The MATLAB software package was used
for both the optimization of the model and the analysis of the
results.

3. Results

3.1. Evaluation of flux simulations

Half-hourly observations of fluxes and environmental variables
were used to optimize the model with annual parameters. Five sets
of parameters were derived: for all sites together (A), for groups
of sites with a similar vegetation type (V), for groups of sites with
a similar vegetation type and climate (VC), for individual sites (S)
and for individual site years (SY). The quality of the simulations for
these five parameter sets is presented for the diurnal, seasonal and
annual time scales.

The average diurnal cycle in July derived from observations of
photosynthesis (A) and transpiration (E) is compared with fluxes
simulated with vegetation model parameters (V, Fig. 1) and fluxes
simulated with model parameters of individual site years (SY, Fig.
2). Examples are presented for a tropical evergreen broadleaf for-
est in Brazil, a boreal evergreen needleleaf forest in Finland and

a subtropical grassland in the US. The diurnal variation for these
different locations is captured best with simulations that use site
year parameters. When using vegetation parameters the fluxes are
over- or underestimated (BR-Ban and FI-Hyy) or photosynthesis
and transpiration start too late in the morning (US-Goo).
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Fig. 1. Comparison of the observed and simulated average diurnal cycle of photosynthesis (left) and transpiration (right) in July for three different sites. The fluxes are
simulated with parameters derived for all sites with a similar vegetation type (V, Table 3). The average observed fluxes with standard deviations are presented by the grey
area and the average simulated fluxes with standard deviations by the black lines.
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Fig. 2. Comparison of the observed and simulated average diurnal cycle of photosynthesis (left) and transpiration (right) in July for three different sites. The fluxes are
simulated with parameters derived for each site year (SY). The average observed fluxes with standard deviations are presented by the grey area and the average simulated
fluxes with standard deviations by the black lines.
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Observed and simulated average seasonal cycles of A and E
nd their standard deviations are shown in Figs. 3 and 4 for ever-
reen needleleaf forest (ENF) sites growing in four climatic zones.
comparison is made between fluxes simulated with PFT model

arameters as in Table 4 (VC) and fluxes simulated with model
arameters of individual site years (SY). The average seasonal cycle
f simulated A and E of boreal ENF sites is comparable to the
bservations in both figures. Standard deviations are only correct
hen using the site year parameters, fluxes simulated with PFT
arameters show too little variation. For temperate continental
nd temperate ENF sites fluxes simulated with PFT parameters are
nderestimated, while the simulations using site year parameters
how a seasonal variation, which is closer to the observations. In
he subtropical and Mediterranean regions the fluxes are overesti-

ated in both figures, particularly during summer.
Annual simulated fluxes are compared with observations in Fig.

. The coefficients of determination (r2) for annual A and E range
rom 0.39 to 0.93. The deviation between observations and simula-

ions increases when using more general model parameters, which
re derived for larger groups of sites. Simulations using vegeta-
ion parameters (V) or PFT parameters (VC) instead of one single
arameter set (A) show only very minor improvements. Simulated
uxes are of a higher quality only when model parameters of indi-
is (left) and transpiration (right) for the evergreen needle leaf forest sites in four
imilar vegetation type and climate (VC, Table 4). The average observed fluxes with

standard deviations by the black lines.

vidual sites (S) or site years (SY) are used. A simplification with
less variation in model parameter values results evidently in poorer
simulations with deviations of both the diurnal and seasonal cycles
resulting in over- or underestimation of annual fluxes.

3.2. Model parameter variation within and across vegetation
types

Fig. 6 shows that the mean parameter values and their standard
deviations can differ considerably for each vegetation type depend-
ing on how the data are classified. For example, the mean values
of vcm,25 and � systematically increase for cropland, savanna and
evergreen needleleaf forest vegetation types as the data are segre-
gated according to vegetation type (V), vegetation and climate (VC),
sites (S) or site-years (SY). While it is difficult to discern systematic
trends in other parameters and for other vegetation classes, the dif-
ferent classifications do not strongly affect the relative ranking of
parameter values, e.g. the highest values of vcm,25 are for croplands

and the highest � for savannas. For each vegetation type in Fig. 6
an average of different parameter sets is presented. The vegetation
parameters (V) are derived for all sites within a group, and there-
fore do not have a standard deviation. The PFT parameters (VC) are
derived with climates within a vegetation type as in Table 4, the site
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arameters (S) with all sites as in Table 2 and the mean site year
arameter (SY) with all years as in Table 3. The different number
f parameters within each group will influence the standard devia-
ions and thus their means and standard deviations cannot directly
e compared.

The standard deviation (�) of the parameter values from all site
ears is an indicator for the variation within a group. With � the
5% interval confidence intervals in Tables 3 and 4 are estimated.√

irst the standard error is calculated (�M = �/p1 n), which is used
o determine the 95% intervals (p2 ± 1.96�Mp2), assuming that the
arameters are normally distributed. p1 is the mean of the site year
arameters within a group and p2 the parameter derived for the
roup. Cropland parameters have high values for vcm,25 and ˛ and

able 3
odel parameters with 95% confidence intervals derived for groups of site years (n) with

n vcm,25

Cropland 12 48.6 ± 29.9
Savanna 22 18.0 ± 9.7
Deciduous broadleaf forest 63 30.9 ± 8.1
Evergreen broadleaf forest 22 34.3 ± 4.6
Evergreen needleleaf forest 150 27.7 ± 5.2
Grassland 55 43.3 ± 5.0
Mixed forest 25 36.4 ± 11.0
is (left) and transpiration (right) for the evergreen needle leaf forest sites in four
). The average observed fluxes with standard deviations are presented by the grey

a low � (more efficient water use) (Table 3). This implies that crops
are more efficiently assimilating carbon in comparison to other
(natural) vegetation types. In contrast, the parameters for savanna,
which includes a mixture of grassland, trees and shrubs, imply a
low photosynthetic productivity with a high �. The different for-
est types show very similar parameter values. The main difference
between deciduous and evergreen broadleaf forests is seen for �,
which implies a more efficient water use for the deciduous forests.

The two types of evergreen forests show comparable high values
for �. Grassland has an even larger value for �, while also vcm,25 and
jm,25 are higher than for the different forests.

The quality of the flux simulations are improved only slightly
by adding extra model parameters through differentiating vegeta-

in seven vegetation classes. vcm,25 and jm,25 in �mol m−2 s−1, ˛ and � in mol mol−1.

jm,25 ˛ �

136.9 ± 33.2 0.27 ± 0.09 150.60 ± 124.8
68.4 ± 35.5 0.11 ± 0.02 593.34 ± 273.0
154.9 ± 29.9 0.16 ± 0.02 128.56 ± 33.2
114.1 ± 31.3 0.22 ± 0.05 190.77 ± 41.8
121.6 ± 13.6 0.16 ± 0.02 209.63 ± 36.1
238.9 ± 31.0 0.10 ± 0.02 276.46 ± 75.4
136.2 ± 51.8 0.25 ± 0.05 149.80 ± 131.0
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re A and E. The dotted line is the 1:1 line and the solid line the regression line. Diffe
ites together (top panels), for groups of sites with a similar vegetation type, for PFT

ion classes according to climate (compare V to VC in Fig. 5). This
ould suggest that variation of model parameters is not related to
limate. In Table 4 the parameters for groups of sites with simi-
ar vegetation type and climate (PFTs) are presented to verify this.
rom this table it is not instantly clear whether a systematic differ-
nce exists between climate sub-groups within a PFT. For instance,
cm,25 is similar for the climates of evergreen needleleaf forest sites,
ut variable for the climates of deciduous broadleaf forest sites.

.3. Grouping sites based on model parameters

Variation of model parameters between PFTs is not coherent
Table 4). The use of this classification results in incorrect simulated
uxes (Fig. 5). Therefore we will attempt to define an independent

lassification purely based on the model parameters. Hierarchical
lustering and k-means clustering are both used to group site years
ith comparable model parameter sets. The choice of the num-

er of groups is subjective, but we chose seven, the same as the
umber of vegetation types. Different numbers of groups were also
iration fluxes for all site years. Observed fluxes are GPP and LE and simulated fluxes
s between the panels are the used parameters to simulate the fluxes derived for all
individual sites or for individual site years (lower panels).

tested and these produced comparable results. From Table 5 it can
be seen that one large group with 175 site years, and six smaller
groups were distinguished when using hierarchical clustering. For
k-means clustering the groups are more evenly distributed (Table
6). Because the two clustering methods are very sensitive to outliers
only those site years are used that are within the range as presented
in Fig. 7. Although the groups derived with the two clustering meth-
ods are not the same, the patterns as in Fig. 7 are almost identical
(data not shown), and thus only the results of k-means cluster-
ing are discussed further. In Fig. 7 the distribution of the different
sites and groups within the parameter space is shown. As expected
the groups are clustered around central means. From this figure
also the relations between parameters can be seen. For instance,
the ratio between vcm,25 and jm,25 is assumed to be constant in

many models. Here both parameters are derived and this results
in a ratio of 3.60 ± 1.51 at 25 ◦ C, which is higher than for instance
the ratio of 2.0 ± 0.60 as derived by Leuning (2002) from 43 data
sets. The parameters jm,25 and ˛ are closely linked in Eq. 8, which
could result in equifinal simulated fluxes with multiple parameter
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ets. For group 4 this might be occurring, with low values for ˛ and
igh values for jm,25.

Vegetation type and climate region are not driving factors
ehind the classification. Each group, derived by k-means cluster-

ng, contains almost all vegetation types and climate regions (Fig.
). It is difficult to see clear dominant vegetation types or climate
egions within the different groups. Evergreen broadleaf forests are
nly found in the first three groups, which contain all different cli-
ate regions. Groups 4 and 5 both consist of evergreen needleleaf

orests and grasslands in boreal and temperate regions. The differ-
nces between these groups are a high jm,25 and a low � for group
, and a low jm,25 and a high � for group 5.

. Discussion

In global land-surface models parameters are distributed by
FTs (Bonan et al., 2003; Sitch et al., 2003; Krinner et al., 2005). For
nstance, bioclimatic limits are chosen defining the possibilities for
stablishment and survival of a given PFT at a certain location, or a
emperature response of photosynthesis. We suggest with our find-
ngs that model parameters are more variable than are assumed
ithin given PFTs. This finding is supported by statistical group-
ng of the sites based on the model parameter values. The derived
roups could not be related to vegetation type or climate region
Fig. 8). Site years with comparable model parameters do not have
common vegetation type or climate.
EBF ENF GRA MFO

Table 3) derived for groups of sites with a similar vegetation type (V), for PFTs (VC),

This raises the question of what the common characteristics are
for these statistically determined groups of sites. These characteris-
tics are essential to provide parameter values for every grid cell in a
global land-surface model. One possible hypothesis poses that the
parameters are a representation of short term strategies to avoid
stress and responses to disturbances to for example drought, heat
or a lack of nutrients (Bonan et al., 2003). With this concept dif-
ferences between the statistical groups may be better understood.
The variation will not be detectable when comparing average envi-
ronmental variables, because in almost all cases stress occurs only
during specific short periods. A second possible hypothesis poses
that sites cannot be grouped based on the model parameters. PFTs
might be changing too abruptly, while in reality the drivers cause a
more gradual change. A classification of vegetation can be following
these more gradual transitions, comparable to the leaf economics
spectrum (Reich et al., 1997; Wright et al., 2004; Harrison et al.,
2010). Alternatively, our simple model formulations may not able
to capture the variation of processes involved in the global ecosys-
tem carbon and water balance. This could potentially also result
in a too large parameter variation within a PFT, that would be an
artifact of the modeling approach rather than a real phenomenon.

While we think this explanation is rather improbable, we cannot
completely discard it either with the current analysis.

The finding that model parameters are more variable than are
assumed with the PFTs is supported by the quality of the simu-
lated fluxes, which increases with more specifically defined model
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Table 4
Model parameters derived for groups of site years (n) of the PFTs from Table 2. vcm,25 and jm,25 in �mol m−2 s−1, ˛ and � in mol mol−1. * invalid value of ˛ resulted in incorrect
parameters. ** unable to derive confidence intervals due to small sample size.

n vcm,25 jm,25 ˛ �

Cropland Subtr. Med. 5 48.0 ± 15.7 109.3 ± 44.9 0.35 ± 0.08 174.7 ± 101.5
Temperate 7 75.5 ± 13.9 307.8 ± 97.2 0.19 ± 0.12 131.3 ± 22.7

Savanna Boreal 4 12.1 ± 2.4 47.0 ± 13.5 0.13 ± 0.01 376.7 ± 94.4
Subtr. Med. 8 23.3 ± 6.6 81.1 ± 78.0 0.16 ± 0.04 247.4 ± 63.8
Temperate 1 12.2** 33.6** 0.20** 530.3**
Temp. Cont. 5 212.6* 493.6* 2.61* 1339.3*
Tropical 4 10.1 ± 5.5 34.9 ± 24.5 0.06 ± 0.02 1839.5 ± 1794.3

Deciduous broadleaf forest Boreal 7 28.9 ± 2.4 93.7 ± 21.1 0.18 ± 0.06 279.7 ± 251.3
Subtr. Med. 21 26.4 ± 4.1 112.6 ± 20.5 0.15 ± 0.03 138.9 ± 34.8
Temperate 24 40.8 ± 4.8 142.6 ± 28.7 0.23 ± 0.05 146.5 ± 171.4
Temp. Cont. 11 61.7 ± 8.6 260.4 ± 37.5 0.28 ± 0.05 181.5 ± 42.8

Evergreen broadleaf forest Subtr. Med. 8 24.6 ± 4.5 95.7 ± 63.0 0.16 ± 0.06 197.2 ± 67.9
Temperate 3 42.3 ± 4.6 136.5 ± 4.6 0.33 ± 0.13 159.0 ± 107.3
Tropical 11 38.3 ± 5.9 118.9 ± 28.7 0.23 ± 0.05 186.8 ± 35.2

Evergreen needleleaf forest Boreal 66 23.7 ± 3.1 113.7 ± 19.8 0.14 ± 0.03 268.9 ± 48.6
Subtr. Med. 33 27.4 ± 3.3 102.5 ± 23.7 0.18 ± 0.03 277.0 ± 121.7
Temperate 44 30.6 ± 4.0 175.5 ± 27.3 0.16 ± 0.03 121.1 ± 104.4
Temp. Cont. 7 30.3 ± 4.0 89.8 ± 13.9 0.26 ± 0.09 162.5 ± 194.4

Grassland Arctic 2 42.3** 129.1** 0.16** 682.4**
Subtr. Med. 11 33.3 ± 9.5 113.3 ± 22.9 0.19 ± 0.05 192.6 ± 40.0
Temperate 42 45.0 ± 4.4 209.7 ± 31.3 0.11 ± 0.02 307.6 ± 60.4

Mixed forest Subtr. Med. 8 37.6 ± 5
Temperate 8 40.5 ± 5
Temp. Cont. 9 35.7 ± 1

Table 5
Average parameters with 95% confidence intervals for the site years (n) within seven
groups derived with hierarchical clustering. vcm,25 and jm,25 in �mol m−2 s−1, ˛ and
� in mol mol−1.

n vcm,25 jm,25 ˛ �

1 175 40.9 ± 1.8 159.4 ± 9.9 0.26 ± 0.02 176.4 ± 10.2
2 48 31.3 ± 4.2 114.1 ± 16.7 0.16 ± 0.02 413.2 ± 24.2
3 15 32.4 ± 6.2 132.1 ± 23.8 0.12 ± 0.02 697.1 ± 67.3

p
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w
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4 11 53.7 ± 15.6 461.1 ± 36.5 0.18 ± 0.06 163.8 ± 37.8
5 11 94.8 ± 10.0 245.9 ± 31.4 0.60 ± 0.09 214.9 ± 49.1
6 7 58.4 ± 14.6 116.1 ± 23.3 0.75 ± 0.09 213.5 ± 87.3
7 6 58.2 ± 12.6 152.6 ± 41.7 0.62 ± 0.14 655.5 ± 73.8

arameters (Fig. 5). The acceptance of the quality of flux simula-
ions using PFT model parameters in global models depends on the
urpose of the simulations. It will be quite different if we want to
odel a given site to a high degree of precision and accuracy or
hether we want a global model to work with prescribed accuracy
ith a minimum number of parameters.

The quality of the flux simulations and the values of the model

arameters are influenced by the quality of the data used and by
he model structure. Flux measurements contain random and sys-
ematic errors. Random errors result from the equipment used and
ata processing procedures, such as inaccurate calibrations, high-
nd low-frequency flux losses. Systematic errors occur because of

able 6
verage parameters with 95% confidence intervals for the site years (n) within seven
roups derived with k-means clustering. vcm,25 and jm,25 in �mol m−2 s−1, ˛ and � in
ol mol−1.

n vcm,25 jm,25 ˛ �

1 87 35.5 ± 1.6 144.8 ± 9.6 0.20 ± 0.01 163.9 ± 11.3
2 59 50.8 ± 3.0 161.5 ± 14.0 0.38 ± 0.02 167.0 ± 18.8
3 55 29.2 ± 2.7 103.8 ± 11.2 0.17 ± 0.02 363.7 ± 17.8
4 27 50.5 ± 7.7 368.0 ± 34.7 0.16 ± 0.03 182.7 ± 28.0
5 21 34.0 ± 7.5 132.1 ± 26.3 0.12 ± 0.02 663.6 ± 54.8
6 18 79.5 ± 11.8 188.6 ± 36.5 0.67 ± 0.07 213.0 ± 44.3
7 6 58.2 ± 12.6 152.6 ± 41.7 0.62 ± 0.14 655.5 ± 73.8
.9 178.3 ± 126.7 0.22 ± 0.10 153.5 ± 45.2

.1 165.8 ± 20.8 0.26 ± 0.08 109.3 ± 47.2
0.5 103.3 ± 32.0 0.32 ± 0.08 200.1 ± 20.7

storage-related problems during low turbulence conditions and
advection (Raupach et al., 2005; Richardson et al., 2006, 2008;
Lasslop et al., 2008). The model parameters in this study are opti-
mized with eddy covariance flux data and given meteorological
data. Parameter uncertainty derived from these observations has
been determined by Richardson et al. (2007) – around 5–15% for
the parameters of their model – and are comparable between years.
The mean absolute weighted error was used to estimate maxi-
mum likelihood parameters in their study, because the flux error
is approximated by a double-exponential distribution (Richardson
and Hollinger, 2005). But according to Lasslop et al. (2008) the
flux error distribution follows a superposition of Gaussian distri-
butions. They tested different objective functions, and concluded
that there were no significant differences between the least squares
optimization with the use of absolute deviations. We use gross pri-
mary production (GPP) fluxes from the Fluxnet database, which
are derived from observed NEE by a simple model (Reichstein et
al., 2005). This could introduce an additional uncertainty into our
results, because we use this flux to derive photosynthesis parame-
ters.

A critical part of the model structure is the upscaling from leaf to
ecosystem model parameters based on LAI. We use satellite derived
values of LAI, which is for most sites a representation of a larger area
than covered by the eddy covariance flux footprint. Especially when
the vegetation representation of the two observations are not in
agreement errors will be introduced. In the subtropical Mediter-
ranean region the fluxes are overestimated, particularly during
summer. This is a result of the use of annual model parameters
which are scaled with LAI, which may not be able to describe struc-
tural adaptation of vegetation to drought. The poor quality of the
simulated fluxes for the savanna sites may be attributed to the fact
that this vegetation type consists of a combination of grasslands

and trees, with different vegetation characteristics that cannot be
scaled up with one single value for LAI. This problem has an impact
on the variation of model parameters. Further work is needed to
quantify this impact, and to investigate other possibilities for the
upscaling from leaf to ecosystem.
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ig. 7. Model parameters classified by k-means clustering. Each point represents a
or each group.

The results of our study can only be compared with other stud-
es when taking into account the differences between the model
ormulations. The values of vcm,25 derived by Medlyn et al. (2002b)
rom measurements on needles from a forest in France are within
he same range as the values we derived for needleleaf forests.
cm,25 can be compared, because a similar temperature response
s used (Eq. 23), although we keep Evcm constant. We assumed a
onstant temperature response, but Medlyn et al. (2002b) observed

seasonal variation. They compared values of vcm,25 and jm,25 and

ound that values were highest for crops and comparable for decid-
ous and evergreen trees. We derived this variation from the eddy
ovariance observations. The values derived from the fluxes by
hum et al. (2008) for three forests in Finland and Sweden and
ear, the colors represent different groups and the black crosses represent averages

by Verbeeck et al. (2008) for a temperate deciduous forest are sim-
ilar to our results. It is interesting to note here that with both a
bottom-up and top-down approach comparable parameter values
are derived.

The water use efficiency (�) is not as frequently used as the
parameters from the model of Farquhar et al. (1980). From the def-
inition of �, given in Eq. 1, it can be seen that a higher � indicates a
lower water use efficiency. Arneth et al. (2006) use the terms con-

servative and aggressive water use for low and higher values of �
for sites in Siberia and southern Africa. This is what our results show
as well, with highest values of � for the savanna sites. These results
are interesting, as the lowest values of � would be expected at the
site with largest water stress. This is consistent with the results of
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ig. 8. Distribution of vegetation types and climate regions within groups in Tabl
avanna (SAV), deciduous broadleaf forest (DBF), evergreen broadleaf forest (EBF),
rctic (AR), boreal (BO), subtropical Mediterranean (TM), temperate (TE), temperate

chymanski et al. (2009), who derived a low value for � during the
ry season and higher values during the wet season for a savanna
ite in Australia.

. Summary and conclusions

With a simple photosynthesis model we derived parameters for
ll sites available within the Fluxnet database. The model is capable
f simulating the diurnal and seasonal variation of photosynthesis
nd transpiration fluxes for a large range of sites with different veg-
tation types and climates. For this no additional site information
s needed besides the eddy covariance fluxes, meteorological data
nd seasonal LAI, the simplified approach allowing us to apply the
odel at all sites.
The choice of a parameter classification has a large impact on the

uality of the simulated photosynthesis and transpiration fluxes.
hen more general parameters are used, the quality of the fluxes

ecreases. The diurnal and seasonal cycles and annual average
uxes are over- or underestimated. The best fluxes are simulated
ith parameters that are derived for each individual site year.

his indicates that a PFT classification introduces an uncertainty
o the short term variation of photosynthesis and transpiration
uxes.

We conclude that model parameters are more variable than
ssumed with the PFTs. A PFT classification does not reflect real-
ty of short term photosynthesis and transpiration flux variation,
upporting that a more dynamic description of trait-based PFTs is

necessary next step. Site years with comparable model parame-

ers do not have a common vegetation type or climate. The derived
roups could not be related to vegetation type or climate region.
lthough site year parameters produce the best results, this gener-
tes a different problem. The parameters are too specific to be used
rived from k-means clustering for Model I. Vegetation types are cropland (CRO),
reen needleleaf forest (ENF), grassland (GRA) and mixed forest (MFO). Climats are
inental (TC) and tropical (TR).

in a global study, but they can be used to explore the possibilities of
an alternative classification scheme. The question as to whether it is
possible to classify sites, or if a more fine scaled methodology with
gradual transitions is needed is still open. Further work is needed
before a classification of vegetation within a global climate model
can be produced.
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ppendix A. Model description

.1. Photosynthesis and transpiration

Photosynthesis is simulated with a biochemical model based
n the work of Farquhar et al. (1980). Leaf photosynthesis (A) is
he minimum of carboxylation (Wc) and Ribulose-1,5-bisphosphate
RuBP) regeneration (Wj) minus respiration (Rd).

=
(

1 − �∗

Ci

)
min{Wc, Wj} − Rd (3)

here �∗ is the compensation point for CO2 in absence of dark
espiration (bar) and Ci the intercellular partial pressure of CO2
bar) and Rd = 0.07Vcm. Wc and Wj are determined with the follow-
ng equations (Farquhar et al., 1980; von Caemmerer and Farquhar,
981):

c = VcmCi

Ci + k′ (4)

j = JCi

4(Ci + 2�∗)
(5)

′ = Kc(1 + O/Ko) (6)

∗ = 0.5
Vom

Vcm

Kc

KoO
(7)

= ˛IPARJm
˛IPAR + 2.1Jm

(8)

here IPAR is the photosynthetic active radiation
�mol photons m−2 s−1), J the electron yield, Vcm the rate of
arboxylation mediated by the enzyme Rubisco (�mol m−2 s−1),
om the rate of oxygenation of Rubisco (�mol m−2 s−1), Jm the
aximum potential electron transport rate (�mol m−2 s−1), ˛ the

uantum yield (mol mol−1), Kc the kinetic coefficient for CO2 (bar),
o the kinetic coefficient for O2 (bar) and O the partial pressure for
2 (bar). The ratio Vom/Vcm is assumed to be a constant of 0.21.

The reduction of photosynthesis when soil water is limited, is
imulated by multiplying the right hand side of Eq. 3 by a factor ˇ,
hich ranges between 0 and 1 (Matsumoto et al., 2008):

= (� − �min)(�max − �min + ˇ1)
(�max − �min)(� − �min + ˇ1)

(9)

= ˇ[(1 − �∗/ci) min{Wc, Wj} − Rd] (10)

here � is the soil water content (%), �min and �max are the min-
mum and maximum volumetric soil water content observed at a
ite and ˇ1 is a parameter used to fit an envelope curve around the
oil water content observations. With ˇ both photosynthesis and
ranspiration are reduced during dry periods.

Transpiration (E) is a function of stomatal conductance (gs),
hich can be calculated from A, ca and ci (ppm):

s = A

ca − ci
(11)

= 1.6Dgs (12)

here D is the molar vapor gradient between stomata and the air
nd 1.6 the ratio of molecular diffusivity of H2O to CO2.

The internal partial pressure of CO2 (ci) is determined as
escribed by Arneth et al. (2002), where the models of Cowan
1977) and Farquhar et al. (1980) are combined, by solving the

ollowing quadratic equation:

2C2
i + k1Ci + k0 = 0 (13)

here are two sets of solutions for the k parameters, under enzyme-
imited conditions (Wc) and light-limited conditions (Wj). In the
rest Meteorology 151 (2011) 22–38 33

enzyme-limited case the values for the k parameters are calculated
with the following equations:

k2 = � − 1.6D

k′ + �∗ (14)

k1 = 1.6D − 2�Ca + 1.6D(�∗ − k′)
k′ + �∗ (15)

k0 = (�Ca − 1.6D)Ca + 1.6D�∗k′

k′ + �∗ (16)

and in the light-limited case by:

k2 = � − 1.6D

3�∗ (17)

k1 = 1.6D − 2�Ca − 1.6D�∗

3�∗ (18)

k0 = (�Ca − 1.6D)Ca + 1.6D2�∗2

3�∗ (19)

where Ca is the partial pressure of ambient CO2 (bar) and � the ratio
between E and A as a function of gs (mol mol−1).

A.2. Scaling up from leaf to canopy

In most models scaling up is based on the assumption that
the profile of leaf nitrogen content along the depth of the canopy
follows the time-mean profile of radiation (Sellers et al., 1992;
Arora, 2002). The main assumption is that the photosynthetic
properties of leaves acclimate fully to the light conditions within
a canopy. The photosynthetic capacity is proportional to the
time-integrated absorbed radiation (Kull and Jarvis, 1995). Pho-
tosynthetically active radiation (PAR) is assumed to be the only
variable determining change in the values of parameters within
the canopy. The exponential light interception model holds:

I(x) = I0 × e−kL(x) (20)

where I0 is the PAR incident on top of the canopy, L(x) is the leaf
area index cumulated from the top of the canopy down to level x,
I(x) is the PAR at level x within the canopy and k is a function of
the leaf inclination angle distribution. Total PAR absorbed by the
canopy (IC) can be obtained by integrating Eq. 20 over the depth of
the canopy, which results in:

IC = I0 × (1 − e−kL)
k

(21)

Parameters that determine the photosynthesis rate follow the same
exponential function. This implies that these parameters can be
scaled up from the leaf to the canopy in a similar way (Cox et al.,
1998; Wolf et al., 2006):

P = p × (1 − e−kL)
k

(22)

where P is the canopy scale parameter and p the leaf scale param-
eter. This function applies for the canopy scale parameters Vcm, Jm
and ˛c which are derived from the temperature corrected param-
eters at the leaf scale (vcm, jm and ˛). k is set to 0.5 for all sites. � is
not scaled with LAI as it is parameterized on the ecosystem scale.

A.3. Temperature responses

At the leaf scale there are several studies in which the tem-
perature response of vcm and jm are determined from observations

(Bunce, 2000; Medlyn et al., 2002a,b; Kattge and Knorr, 2007). The
parameters are described by an Arrhenius function or modified
Arrhenius function with an optimal temperature. These different
models have been validated at the leaf scale, but at the ecosystem
scale there are no observations as the parameters are the sum of
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he individual leaves. The temperature response function that will
e used in this study is (Knorr and Kattge, 2005; Thum et al., 2008):{ }

= p25 × exp

Ep(T − Tref )
Tref RT

(23)

his function applies for the parameters vcm, jm, KC and KO, for which
cm,25, jm,25, KC,25 and KO,25 are the parameter values at the refer-

able B.1
he site name codes are a composition of country (first two letters) and site name (last thr
roadleaf forest (DBF), evergreen broadleaf forest (EBF), evergreen needleleaf forest (EN
etland (WET) and woody savanna (WSA). Climates are arctic (AR), boreal (BO), subtrop

TR). References are given describing the sites, when no reference was available the site r

Site Climate Vegetation Latitud

AT-Neu TE GRA 47.12
AU-Fog TR SAV −12.54
AU-Wac TE EBF −37.43
BE-Jal TE MF 50.56
BE-Vie TE MF 50.31
BR-Ban TR EBF −9.82
BR-Sp1 TR WSA −21.62
CA-Ca1 TE ENF 49.87
CA-Ca2 TE ENF 49.87
CA-Ca3 TE ENF 49.53
CA-Mer TC OSH 45.41
CA-NS3 BO ENF 55.91
CA-NS4 BO ENF 55.91
CA-NS5 BO ENF 55.86
CA-NS6 BO OSH 55.92
CA-Oas BO DBF 53.63
CA-Obs BO ENF 53.99
CA-Ojp BO ENF 53.92
CA-Qcu BO ENF 49.27
CA-Qfo BO ENF 49.69
CA-SF1 BO ENF 54.49
CA-SF2 BO ENF 54.25
CA-SF3 BO ENF 54.09
CA-SJ1 BO ENF 53.91
CA-SJ2 BO ENF 53.95
CA-SJ3 BO ENF 53.88
CA-TP4 TC ENF 42.71
CH-Oe1 TE GRA 47.29
CN-Cha TC MF 42.4
CN-Do2 SM GRA 31.58
CN-HaM AR GRA 37.37
DE-Hai TE DBF 51.08
DE-Kli TE CRO 50.89
DE-Tha TE ENF 50.96
DE-Wet TE ENF 50.45
DK-Lva TE GRA 55.68
DK-Sor TE DBF 55.49
ES-ES1 SM ENF 39.35
ES-ES2 SM CRO 39.28
ES-LMa SM SAV 39.94
ES-VDA TE GRA 42.15
FI-Hyy BO ENF 61.85
FI-Sod BO ENF 67.36
FR-Fon TE DBF 48.48
FR-LBr TE ENF 44.72
FR-Lq1 TE GRA 45.64
FR-Lq2 TE GRA 45.64
GF-Guy TR EBF 5.28
HU-Mat TE GRA 47.85
ID-Pag TR EBF 2.35
IE-Dri TE GRA 51.99
IT-Amp SM GRA 41.9
IT-BCi SM CRO 40.52
IT-Col SM DBF 41.85
IT-Cpz SM EBF 41.71
IT-Lav TE ENF 45.96
IT-Lec SM EBF 43.3
IT-LMa TE DBF 45.58
IT-Mal TE GRA 46.12
IT-MBo TE GRA 46.02
IT-Non SM DBF 44.69
IT-Pia SM OSH 42.58
rest Meteorology 151 (2011) 22–38

ence temperature (Tref = 25 ◦C), Evcm , Ejm , EC and EO the activation
energies, T the temperature [K] and R the gas constant.
Appendix B. Characteristics of the Fluxnet sites used in this
study

See Table B.1.

ee letters). Vegetation types are closed shrubland (CSH), cropland (CRO), deciduous
F), grassland (GRA), mixed forest (MFO), open shrubland (OSH), savanna (SAV),

ical Mediterranean (SM), temperate (TE), temperate continental (TC) and tropical
esearcher is named.

e Longitude Reference

11.32 Wohlfahrt et al. (2008)
131.31 Jason Beringer
145.19 Wood et al. (2008)

6.07 Louis François
6.00 Aubinet et al. (2001)

−50.16 da Rocha et al. (2009)
−47.65 Santos et al. (2004)

−125.33 Humphreys et al. (2006)
−125.29 Humphreys et al. (2006)
−124.90 Humphreys et al. (2006)
−75.52 Lafleur et al. (2003)
−98.38 Goulden et al. (2006)
−98.38 Goulden et al. (2006)
−98.49 Goulden et al. (2006)
−98.96 Goulden et al. (2006)

−106.20 Black et al. (2000)
−105.12 Krishnan et al. (2008)
−104.69 Howard et al. (2004)
−74.04 Giasson et al. (2006)
−74.34 Bergeron et al. (2007)

−105.82 Mkhabela et al. (2009)
−105.88 Mkhabela et al. (2009)
−106.01 Mkhabela et al. (2009)
−104.66 Zha et al. (2009)
−104.65 Zha et al. (2009)
−104.65 Zha et al. (2009)
−80.36 Arain and Restrepo-Coupe (2005)

7.73 Ammann et al. (2007)
128.1 Guan et al. (2006)
121.9 Yan et al. (2008)
101.18 Kato et al. (2006)

10.45 Knohl et al. (2003)
13.52 Christian Bernhofer
13.57 Grünwald and Berhofer (2007)
11.46 Rebmann et al. (2010)
12.08 Gilmanov et al. (2007)
11.65 Pilegaard et al. (2003)
−0.32 Sanz et al. (2004)
−0.32 Maria Jose Sanz
−5.77 Maria Jose Sanz

1.45 Gilmanov et al. (2007)
24.29 Suni et al. (2003b)
26.64 Suni et al. (2003a)

2.78 Eric Dufrêne
−0.77 Berbigier et al. (2001)

2.74 Gilmanov et al. (2007)
2.74 Gilmanov et al. (2007)

−52.93 Bonal et al. (2008)
19.73 Pintér et al. (2008)

114.04 Hirano et al. (2007)
−8.75 Gerard Kiely
13.61 Gilmanov et al. (2007)
14.96 Reichstein et al. (2003a)
13.59 Valentini et al. (1996)
12.38 Garbulksy et al. (2008)
11.28 Marcolla et al. (2003)
11.27 Lorenzo Genesio

7.15 Fabio Petrella
11.7 Gilmanov et al. (2007)
11.05 Gianelle et al. (2009)
11.09 Reichstein et al. (2003a)
10.08 Reichstein et al. (2005)
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Table B.1 (Continued )

Site Climate Vegetation Latitude Longitude Reference

IT-Ren TE ENF 46.59 11.43 Montagnani et al. (2009)
IT-Ro1 SM DBF 42.41 11.93 Rey et al. (2002)
IT-SRo SM ENF 43.73 10.28 Chiesi et al. (2005)
JP-Tom TC MF 42.74 141.51 Hirata et al. (2007)
NL-Ca1 TE GRA 51.97 4.93 Jacobs et al. (2007)
NL-Ca2 TE CRO 51.95 4.9 Jacobs et al. (2007)
NL-Loo TE ENF 52.17 5.74 Dolman et al. (2002)
SE-Faj TE WET 56.27 13.55 Lund et al. (2007)
SE-Nor TC ENF 60.09 17.48 Lagergren et al. (2008)
SK-Tat TC ENF 49.12 20.16 Dario Papale
UK-EBu TE GRA 55.87 −3.21 Mark Sutton
UK-ESa TE CRO 55.91 −2.86 John Moncrieff
UK-Gri TE ENF 56.61 −3.8 Rebmann et al. (2005)
UK-Ham TE DBF 51.12 −0.86 Mike Broadmeadow
UK-PL3 TE DBF 51.45 −1.27 Richard Harding
US-Bar TC DBF 44.06 −71.29 Jenkins et al. (2007)
US-Blo SM ENF 38.9 −120.63 Misson et al. (2005)
US-Bn1 BO ENF 63.92 −145.38 Liu et al. (2005)
US-Bn2 BO DBF 63.92 −145.38 Liu et al. (2005)
US-CaV TE GRA 39.06 −79.42 Tilden Meyers
US-Dk2 SM MF 35.97 −79.1 Pataki and Oren (2003)
US-Dk3 SM MF 35.98 −79.09 Pataki and Oren (2003)
US-Goo SM GRA 34.25 −89.97 Tilden Meyers
US-KS1 SM ENF 28.46 −80.67 Bert Drake
US-KS2 SM CSH 28.61 −80.67 Powell et al. (2006)
US-Me1 SM ENF 44.58 −121.5 Irvine et al. (2007)
US-Me3 SM ENF 44.32 −121.61 Vickers et al. (2009)
US-Me4 SM ENF 44.5 −121.62 Anthoni et al. (2002)
US-MMS SM DBF 39.32 −86.41 Schmid et al. (2000)
US-MOz SM DBF 38.74 −92.2 Gu et al. (2006)
US-NC2 SM ENF 35.8 −76.67 Noormets et al. (2010)
US-NR1 BO ENF 40.03 −105.55 Monson et al. (2002)
US-Syv TC MF 46.24 −89.35 Desai et al. (2005)
US-WCr TC DBF 45.81 −90.08 Cook et al. (2004)
US-Wi1 TC DBF 46.73 −91.23 Noormets et al. (2007)
US-Wi4 TC ENF 46.74 −91.17 Noormets et al. (2007)
US-Wi8 TC DBF 46.72 −91.25 Noormets et al. (2007)
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