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Août 17, Liège, B-4000, Belgium, ††Chair of Ecoclimatology, Technische Universität München, Hans-Carl-von-Carlowitz-Platz 2,

Freising, 85354, Germany, ‡‡Department for Innovation in Biological, Agro-food and Forest systems (DIBAF), University of

Tuscia, via S. Camillo de Lellis snc, Viterbo, 01100, Italy, §§Department of Environmental Sciences and Energy Research,

Weizmann Institute of Science, Rehovot, Israel, ¶¶Swiss Federal Research Institute WSL, Zürcherstr. 111, Birmensdorf, CH-8903,
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Abstract

We review observational, experimental, and model results on how plants respond to extreme climatic conditions

induced by changing climatic variability. Distinguishing between impacts of changing mean climatic conditions and

changing climatic variability on terrestrial ecosystems is generally underrated in current studies. The goals of our

review are thus (1) to identify plant processes that are vulnerable to changes in the variability of climatic variables

rather than to changes in their mean, and (2) to depict/evaluate available study designs to quantify responses of

plants to changing climatic variability. We find that phenology is largely affected by changing mean climate but also

that impacts of climatic variability are much less studied, although potentially damaging. We note that plant water

relations seem to be very vulnerable to extremes driven by changes in temperature and precipitation and that heat-

waves and flooding have stronger impacts on physiological processes than changing mean climate. Moreover, inter-

acting phenological and physiological processes are likely to further complicate plant responses to changing climatic

variability. Phenological and physiological processes and their interactions culminate in even more sophisticated

responses to changing mean climate and climatic variability at the species and community level. Generally, observa-

tional studies are well suited to study plant responses to changing mean climate, but less suitable to gain a mechanis-

tic understanding of plant responses to climatic variability. Experiments seem best suited to simulate extreme events.

In models, temporal resolution and model structure are crucial to capture plant responses to changing climatic vari-

ability. We highlight that a combination of experimental, observational, and/or modeling studies have the potential

to overcome important caveats of the respective individual approaches.
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Introduction

Although the spatial and temporal extent of future cli-

matic changes is still partly uncertain (IPCC, 2007a), it

is likely that the adaptive capacity of terrestrial plants

and ecosystems will be exceeded in many regions

(IPCC, 2007b). Already today, responses to climate

change can not only be observed for individual species

and ecosystems (e.g. Allen & Breshears, 1998; Gitlin

et al., 2006) but also across species and organizational

scales (e.g. Walther et al., 2002; Allen et al., 2010; Lind-

ner et al., 2010). Climate change may manifest itself in

two fundamentally different ways: in a change in the

mean of for example temperature or precipitation, and

in a change in their variability (i.e. variance and/or dis-

tribution, Fig. 1; Rummukainen, 2012; Seneviratne

et al., 2012). It is important to note that these terms

relate to steady-state systems. The climate system and

ecosystems, however, are in permanent transition and

therefore the term ‘mean’ and ‘variability’ only make

sense relative to well-defined spatial and temporal

scales. Moreover, mean and variability may not be fully

independent (e.g. an increasing mean value often

implies increasing standard errors). Here, we still treat

changes in mean and variability as two separate

aspects, defining changes in the mean as changes over

longer time periods (e.g. inter-annual changes) and

changes in variability as changes over medium/short-

term periods (e.g. inter-daily changes) of climatic

variables. We define extreme events from this climato-

logical perspective as increasing climatic variability (i.e.

increasing variance and/or changing distribution) in

contrast to changes in mean climate. Our aim is to

emphasize the generally unrecognized distinction

between impacts of changing mean climate and chang-

ing climatic variability on terrestrial ecosystems.

We center, but do not limit our synthesis on a plant’s

perspective of temperature and precipitation extremes,

since these are the most important climatic determi-

nants of plant growth and survival globally (e.g. Boisv-

enue & Running, 2006). Observations since 1950 show

that the length of warm spells and heat waves

increased (e.g. Barriopedro et al., 2011; Rahmstorf &

Coumou, 2011; Seneviratne et al., 2012). More intense

and longer droughts are observed, but at the same time

the number of heavy precipitation events increased

(Seneviratne et al., 2012 and references therein). Future

projections on changes in climatic variability show

strong spatial and temporal heterogeneity (Giorgi et al.,

2004; Orlowsky & Seneviratne, 2012) and are highly

uncertain (Seneviratne et al., 2012). Using multi-model

experiments, Barriopedro et al. (2011) for instance

found that the probability of summer heatwaves may

increase by a factor of 5–10 in the future although Schär

et al. (2004) predict that temperature variability will

increase by a factor of 2 in Europe. Projected changes in

extreme precipitation events (droughts or flooding) are

even more uncertain. Orlowsky & Seneviratne, 2011

derived from their simulations with an ensemble of

general circulation models (GCMs) robust projections

on increasing droughts over the Mediterranean and

increasing heavy precipitation over the Northern high

latitudes.

Although changes in the mean values are important,

there is evidence that plant distribution (Chapin et al.,

1993; Bokhorst et al., 2007), survival (Van Peer et al.,

2004) or net primary productivity and species diversity

(Knapp et al., 2002) respond to extreme rather than to

average conditions (Jentsch & Beierkuhnlein, 2008). In

addition to that, different physiological processes such

as photosynthesis, water relations or nutrient uptake at

the species, community or ecosystem level affect the

response of plants to climatic variability (Fig. 2). To

account, for example, for changing precipitation distri-

butions, Knapp et al. (2002) decreased precipitation fre-

quency, but not its total amount in a mesic grassland

leading to more intense precipitation events. They

found reduced carbon turnover, but increased species

diversity. Drier conditions also tend to decrease evapo-

transpiration, which leads to lower evaporative cooling

(Teuling et al., 2010). In combination, warming and

drought can therefore lead to additional warming of an

ecosystem (Seneviratne et al., 2006; Fischer et al., 2007;

Kuster et al., 2012).
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Fig. 1 The two theoretical cases of changing climatic drivers:

(1) changes in the mean but not the variance (upper panel),

(2) changes in the variance, but not the mean of a variable

(lower panel). A third case is conceivable where both the vari-

ance and the mean remain comparable, but rare, very extreme

events occur, changing essentially the nature of the distribution.

Importantly, any discussion of means vs. extremes requires a

temporal reference, as a short-term increase in the mean may

turn out to be a long-term increase in the variance.
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In addition to the impacts of changing climatic vari-

ability, the physiological response of terrestrial plants

depends also on interactions between species (Thorpe

et al., 2011) and their ability to adapt and acclimate.

The water available for plants depends on the water

holding capacity of the soil (Kramer & Boyer, 1995;

Porporato et al., 2004; Leuzinger & Körner, 2010;

Raz-Yaseef et al., 2010), competition with other plants

(Casper & Jackson, 1997) and precipitation patterns

(Knapp et al., 2008). The latter has different effects on

soils with high or low water holding capacity (i.e. a

stronger or weaker buffer against drought; Knapp et al.,

2008) or on flood occurrence, which is an important

driver of plant distribution (Crawford, 1992; Colmer &

Flowers, 2008; Parolin & Wittmann, 2010). Furthermore,

interactions between changing climatic variables as

well as thereby induced community shifts may affect

the response of plants to new conditions (Langley &

Megonigal, 2010; De Boeck et al., 2011). For example, a

drier and warmer climate will exert stronger con-

straints on plant growth than a warmer, but also wetter

climate; or rising CO2 may alleviate the impact of

drought (Morgan et al., 2004; Holtum & Winter, 2010).

Moreover, more prolonged dry periods will alternate

with more intensive rainfall events, both within and

between years, which will change soil moisture dynam-

ics (Weltzin et al., 2003; Porporato et al., 2004; Fay et al.,

2008; Knapp et al., 2008; Bartholomeus et al., 2011a).

Eventually, it is also crucial how quickly plant commu-

nities adapt genetically to the imposed changes. The

IPCC (2007b) concluded that the rate of natural adapta-

tion will be slower than the rate of climate change. Nat-

ural adaptation differs between species: although

species with short generation times may adapt within

years, Rehfeldt et al. (2001) for example estimate that it

will take 2–12 generations (an equivalent of 200–

1200 years) for a coniferous trees species to show

genetic adaptation in response to climatic change. All

these factors determine whether plants at a specific site

will experience changing climatic variability as extreme

or not.

Thus, the vulnerability of terrestrial plants to climate

change will, besides changes in the mean, largely

depend on the changes in the climatic variability and

the occurrence of extreme events. The understanding of

this difference in experiments and model simulations

requires very good knowledge of the baseline or control

climate (especially the background variability to which

plants are adapted to). This complies with the fact that

extreme conditions per se have shaped ecosystems for

a long time (Körner, 1998, 2003) and may also foster

adaptation and thus decrease sensitivity (Hegerl et al.,

2011). A plant’s response to specific environmental con-

ditions produces its specialized set of traits, which

allows it to prevail over competitors and occupy a spe-

cific habitat (Körner, 1998, 2003). We use the term

‘stress’ throughout this review according to Lortie et al.

(2004) to refer to situations in which plants experience

critical environmental conditions beyond what they

experience normally (Chapin, 1991) such that damage

to vital function occurs (see Gaspar et al., 2002).

In this article we strive to answer the following ques-

tions:

• Which plant processes are vulnerable to changes in

the variability of climatic drivers rather than to

changes in their mean?

• How can we quantify responses of plants to chang-

ing climatic variability?

We present evidence from experiments, observations,

and modeling studies that help to understand the cur-

rent and future responses of individuals and communi-

ties to changing variability, with a particular focus on

temporal and spatial patterns. These examples also

help to identify important research gaps. We do

not aim to cover the literature on these topics

systematically.

Which plant processes are vulnerable to changes in

the variability of climatic drivers rather than to

changes in their mean?

The vulnerability of plants refers to their susceptibility

to adverse effects of environmental change (IPCC,

2007b). Estimates of vulnerability depend on the defini-

tions (e.g. the definition of death (Zeppel et al., 2011))

and the spatiotemporal scale considered. The ultimate

limit to withstanding environmental stress from an

individual plant’s perspective is mortality due to physi-

ological failure (‘You can only die once’), but at the
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Fig. 2 Conceptual overview of the different processes and

scales affected by extremes and the study designs to assess

them.
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community level, already reductions in growth and

subsequently competitiveness may constitute a limit to

species fitness. For commercial crops, it may even be a

critical reduction in productivity so that cultivation is

discontinued.

In the following sections, we discuss the vulnerability

of phenological and (individual and interacting) physi-

ological processes to changes in the climatic variability

rather than the mean of climatic drivers and we high-

light how these processes play out at the species and

the community level (see schematic overview in Fig. 2).

Our list of examples is not exhaustive, but is meant to

illustrate this important difference between changes in

climatic variability rather than the mean.

Phenological processes

One of the well-studied responses of plant species or

communities to environmental change is phenology,

which tracks seasonal events in generative and vegeta-

tive plant growth. Given the predominant influence of

climate (with the important exception of photoperiod-

ism, see Körner & Basler, 2010), phenology has

emerged as a key tool in identifying fingerprints of

anthropogenic climate change in nature (Menzel et al.,

2006). Observed large-scale phenological changes such

as an earlier onset of leaf unfolding/flowering (Menzel

& Fabian, 1999; Walther et al., 2002; Parmesan & Yohe,

2003; Root et al., 2003; Menzel et al., 2006) are mainly

driven by changes in mean climatic conditions espe-

cially temperature (Vitasse et al., 2009; Polgar &

Primack, 2011; see also Table 1).

Phenological changes in response to changing cli-

matic variability are much less studied although they

clearly interact with phenological changes induced by

changing mean climate. For example, in the temperate

and boreal zones, which are often temperature limited,

a central trade-off revolves around maximizing the veg-

etation period while avoiding frost damage (Kramer

et al., 2010). An untimely response to early warm spells

may be fatal, but can bring enormous advantages for

early successional or opportunistic species (r-strate-

gists, Leuzinger et al., 2011a). In contrast, long-lived,

late successional species often have chilling require-

ments and photoperiodic safety mechanisms (Heide,

1993) and thus may be in a position to avoid increasing

risks of late frost due to changing climatic variability,

but would also benefit less from early warm spells. This

is supported by the fact that the risk of damage due to

late frost events has not increased so far for several

coniferous and broad-leaved species in Central Europe

(Menzel et al., 2003; Scheifinger et al., 2003). Besides this

example, there is further evidence, that extreme events

may alter phenological responses depending on their T
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timing and strength (e.g. Jentsch et al., 2009; Menzel

et al., 2011). This can lead to unexpected effects such as

second flowering in autumn or extended flowering

until the beginning of winter for some species (Luterb-

acher et al., 2007). Moreover, extreme warm spells

decreased the differences in spring phenology between

urban and rural sites (Jochner et al., 2011). Furthermore,

only half of the trees reached leaf maturity in an

extreme drought experiment in the Mediterranean

(Misson et al., 2011). Overall, the response of phenology

to climatic variability seems to be less well understood

than to changing mean climate although increasing

climatic variability may have a strong damaging

potential.

Physiological processes

We here focus on the response of plant water relations

such as transpiration to climatic variability (drought/

heat waves and excess water). Increasing temperatures

and/or heat waves combined with less precipitation or

more variable precipitation events lead to prolonged

dry periods and high atmospheric demand for plant

transpiration, which determine drought stress of plants

beyond changes in mean climate (Schimper, 1903; Porp-

orato et al., 2004). Barriopedro et al. (2011) predict such

an increase in drought events for the 21st century and

the consequences for plant water relations are well doc-

umented (e.g. Leuzinger et al., 2005; Bréda et al., 2006;

Granier et al., 2007) although not all mechanisms are

fully understood. There is an ongoing debate about two

competing response strategies to drought: Isohydric

plants may respond by closing their stomates thus

reducing their water loss, but eventually facing carbon

starvation, whereas anisohydric plants keep their sto-

mates open thus running the risk of hydraulic failure

(McDowell et al., 2008; Sala et al., 2010; Zeppel et al.,

2011). Furthermore, Craine et al. (2012) highlighted the

importance of the timing of an extreme event for grass-

land productivity. The response of plants to drought is

of such importance that Hartmann (2011) refers to it as

a ‘change of evolutionary forces’ from competition for

light to competition for water and carbon. The

responses of plants to climatic variability and particu-

larly drought have important consequences for net pri-

mary productivity (NPP) and hence carbon cycling

even at large spatial scales such as Europe (Ciais et al.,

2005; Dury et al., 2011). Thus, plant responses to

increasing drought events and heat waves influence

plant functioning across spatial and temporal scales.

Also climatic variability resulting in excess water

(i.e. flooding or waterlogging), can induce important

physiological responses by terrestrial plants. Due to

waterlogging, O2 diffusion and supply to the roots is

reduced, and the oxygen demand of plant roots (that is

root respiration – oxygen consumption in the roots),

cannot be fulfilled (Lloyd & Taylor, 1994; Blom &

Voesenek, 1996; Kozlowski, 1997; Amthor, 2000). This

results in waterlogging/oxygen stress, i.e. lack of oxy-

gen due to high soil moisture contents (Bartholomeus

et al., 2008). Both the oxygen supply and demand

may be affected by a more extreme climate, due to

more intense precipitation and higher temperatures

(respiration increases with temperature), respectively.

Therefore, to analyze the effects of low soil oxygen

availability on species performance, it is necessary to

integrate the soil physical and plant physiological

processes, thus accounting for both the oxygen supply

to and oxygen demand of plant roots (Bartholomeus

et al., 2011b). Besides reduced root respiration rates,

the decrease of water absorption due to waterlogging

stress causes sensitive plants to wilt in a similar way to

drought (Jackson & Drew, 1984). Many species already

growing in flood-prone habitats have developed

different strategies to survive hypoxia, by producing

aerenchyma and/or adventitious roots in response to

an increase in the concentration of ethylene and auxin

(Blom & Voesenek, 1996). Flooding can also give rise

to detrimental effects at leaf level, by inducing stoma-

tal closure and, consequently, limiting gas exchange

and plant growth (Kramer, 1951; Chen et al., 2005;

Rengifo et al., 2005; Fernandez, 2006). Thus, similarly to

drought, extremes of excess water, in combination with

higher temperatures, strongly alter plant physiological

processes such as carbon uptake and transpiration.

In conclusion, we note that plant water relations

seem to be very vulnerable to increasing variability in

temperature and precipitation and that changing heat-

waves and flooding have stronger impacts on physio-

logical processes than changing mean climate (see also

Table 1).

Interacting physiological processes

The interaction of physiological processes such as pho-

tosynthesis, nutrient uptake, and water relations may

strongly affect the response of plants to changing cli-

matic variability. Furthermore, interactions among sev-

eral global change drivers or between global change

drivers and other environmental variables, may result

in other growth-limiting factors (e.g. soil type) becom-

ing less important. Drought periods, for example, may

have the potential to not only determine growth or

mortality in an ecosystem but also to cause shifts in

growth-limiting factors such as nutrient limitations. For

example, in an experiment of Kuster et al. (2012) oaks

were grown on two different soil types with different

nutrient availabilities. Under well-watered conditions,

© 2012 Blackwell Publishing Ltd, Global Change Biology, 19, 75–89
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growth on one soil was lower due to nutrient-limiting

conditions, whereas under repeated drought periods

these differences disappeared. This shows that growth-

limiting factors such as nutrient availability can become

less important under changing climatic variability,

although they may be overlooked if only changes in

mean climate are considered. There are many other

examples of interacting processes under changing cli-

matic variability such as ozone stress during periods of

high temperature (Matyssek et al., 2010; Pretzsch &

Dieler, 2011).

The interactions of physiological processes can, how-

ever, be even more intriguing. In coastal habitats (i.e.

the interface of terrestrial and aquatic habitats), which

are not only saline but are also prone to flooding (e.g.

mangroves and salt marshes) (Colmer & Flowers, 2008)

Tamarix africana Poiret, for example, showed a reduc-

tion of CO2 assimilation rates only in young Tamarix

africana Poiret leaves after 45 days under continuous

flooding with saline water (200 mM), whereas old

leaves and the aboveground relative growth rate were

not affected by the treatment (Abou Jaoudé et al., 2012).

Thus, although parts of the plants actually responded

to flooding, this was not the case for the entire plant.

This example is rather related to changes in mean cli-

matic conditions (i.e. temperature-induced rising sea

levels), but it highlights that changing climatic variabil-

ity is likely to interact with an already complex inter-

play of physiological processes.

Species-level processes

At the species level, responses of different genotypes to

climate provide information on how a species may

react to changing climatic variability. Since genotypic

variation results in different sensitivity thresholds of

distinct ecotypes to changing climatic variability it can

partly substitute lacking data of changing climatic vari-

ability for a specific genotype. In an ecotype study

(Klein et al., under review) that included all three cli-

mate types (meso-Mediterranean (MM), thermo-Medi-

terranean (TM), and semiarid (SA) within the natural

distribution of the forest tree Pinus halepensis Mill. (and

hence three very different combinations of mean cli-

mate and climate variability), two major physiological

adjustments identified were as follows: (1) shortening

of the growing season length (from 165 to 100 days) to

match a shorter rainy season and (2) increasing water

use efficiency (from 80, to 95, to 110 lmol CO2 mol-1

H2O under MM, TM, and SA climates, respectively).

However, the sensitivity threshold differed in between

ecotypes: Northern ecotypes mainly responded to the

change MM to TM, whereas Southern ecotypes

responded to the change TM to SA. At the species level,

the study showed that higher xylem sensitivity to

embolism in specific ecotypes matched previous

reports (Atzmon et al., 2004; Schiller & Atzmon, 2009)

of significantly higher mortality rates in these ecotypes

under yet harsher conditions. These observations sug-

gest that while hydraulic constraints in response to cli-

matic variability limited the distribution of a tree

species, plasticity in water use efficiency and growth

phenology enabled its success under a wide range of

climatic conditions.

Community-level processes

At the community level, phenological, physiological,

and species-level processes as well as their interaction

culminate in complex responses to changing mean cli-

mate and climatic variability (Fig. 2). Species range

shifts not only have been associated with changes in

mean climate (Lenoir et al., 2008; Harsch et al., 2009)

but also with changing climatic variability (Kelly &

Goulden, 2008; Doak & Morris, 2010). They lead to a

disruption of ecological communities and species inter-

actions due to different dispersal speed and success.

These processes differ between the trailing and the

leading edge of a population (Doak & Morris, 2010;

Kramer et al., 2010). From a community’s perspective

such range shifts may entail positive (e.g. release from

competition) and negative (e.g. loss of important polli-

nator) consequences. Despite these important conse-

quences of range shifts, it is yet not clear whether

changing mean climate or changing climatic variability

will be a more important driver of range shifts.

At the community level, for annual plants, the vari-

ability of rainfall is important for the success of germi-

nation. Increasing climate variability can have both

negative and positive effects on species persistence and

thus plant population dynamics (Levine et al., 2008).

Climatic fluctuations, for example, may enable species

to avoid interspecific competition if species differ in the

years in which they perform (e.g. reproduce or grow)

best (Levine & Rees, 2004). Dormancy and germination

biology determine whether temporal variability favors

or inhibits species persistence (Levine & Rees, 2004)

and can thus be limiting for a species (Godefroid et al.,

2011). Temporal variation in resource availability as

induced by climatic variability may reduce the effects

of competitive exclusion, allowing more species to

coexist (Knapp et al., 2002).

A combination of extremes/multiple stresses may

not only hamper performance but may also drive

extinctions (Smith & Huston, 1989; Niinemets & Vallad-

ares, 2006). As functional trade-offs exist in adjusting to

multiple environmental limitations (Holmgren et al.,

1997; Silvertown et al., 1999), adapting to one stressor
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may go at the cost of adapting to another (Holmgren

et al., 1997; Niinemets & Valladares, 2006). This trade-

off among the tolerances to multiple environmental

limitations hampers niche differentiation (Niinemets &

Valladares, 2006). Bartholomeus et al. (2011a) demon-

strated that the interaction between both the wet and

dry extremes of plant water stress (oxygen/waterlog-

ging and drought stress) is particularly detrimental to

the survival of specialists and of endangered plant spe-

cies. Both wet and dry weather extremes may increase

due to changing climatic variability, thus increasing the

risk of a combination of these stressors to occur at a site

(Knapp et al., 2008; Bartholomeus et al., 2011a). This

may favor generalists over specialists and rare species

and thus influence vegetation dynamics and associated

ecosystem services in response to changing climatic

variability at the community level.

How can we quantify responses of plants to

changing climatic variability?

Just as responses to global change in general (Rustad,

2008), the responses of plants to changing climatic vari-

ability can be assessed in observational, experimental,

and modeling studies and combinations of these

approaches (Fig. 2). All these approaches have their

limitations in assessing a plant’s perspectives of

extremes: on the one hand, observational studies are by

definition ‘opportunistic’ in the sense that extreme con-

ditions such as a long-lasting drought cannot be

planned (Smith, 2011). On the other hand, scaling and

higher order interactions are an important issue in

experimental and modeling studies (Leuzinger et al.,

2011b; Wolkovich et al., 2012). Furthermore, it is crucial

for any type of study that claims to assess climate vari-

ability to report whether changing mean climate and/

or changing climatic variability have truly been mea-

sured and what the background variability of the

system is over a well-defined time period. We qualita-

tively show this in Table 2 for a number of studies cited

above as a first attempt to foster consistent reporting of

studies dealing with climatic variability.

Observational studies

Observational studies elucidate a plant’s perspectives

of extremes, if by chance they cover extremes. This

makes them inherently opportunistic (Smith, 2011)

unless they involve some retrospective elements such

as dendrochronology. Observations from ‘extreme’

(from a plant’s perspective) sites (e.g. from the leading

and trailing edge of a population (Doak & Morris,

2010)) can help us to learn about the limits and coping

range of plants. To this end, GIS mapping of ‘extreme’

sites within a species’ distribution requires careful

interpolation of weather/climate data collected at

appropriately distributed climate stations. However,

‘extreme’ sites are sometimes only poorly studied since

they represent marginal ecosystems, whose services are

not fully valued by society and have thus been outside

the main focus of researchers. The psammophilic plants

and vegetation of the beaches and dunes of the Portu-

guese coast, for example, are highly adapted to very

specific environmental conditions and directly exposed

to sea level rise, storms, and severe erosion processes.

Unless their ecological requirements, functioning as

communities and most influential physical drivers are

understood, it will be difficult to study their responses

to future climate change (Martins et al., accepted). It is,

however, important to note, that in some disciplines

there is a strong focus on extreme sites (such as on cold,

high elevation or very dry sites in dendrochronological

studies (e.g. Gruber et al., 2012)), which in turn may

complicate studying mean climate impacts.

Generally, observational studies are well suited to

study plant responses to changing mean climate, since

long-term ecological data can be matched with increas-

ingly available climatic observations. They are less suit-

able to gain a mechanistic understanding of plant

responses to climatic variability since usually too many

factors are involved and not all are measured.

Experimental studies

Experiments allow for controlled conditions and facto-

rial experiments in the field and laboratory, have a long

history in ecological research and are of crucial impor-

tance for global change studies (Luo et al., 2011)). When

quantifying climate change impacts, however, field

experiments can usually only test a limited number of

factors and their combinations due to financial and

logistic constraints (Templer & Reinmann, 2011). There-

fore, interactions can often not be fully assessed (e.g.

Wolkovich et al., 2012). Furthermore, to provide

answers to the question of how extreme climatic events

impact on ecosystems, experimenters should ensure

that the applied treatment is indeed ‘extreme’ beyond

the current background variability of the system over a

well-defined time period, running the risk of killing

plants (Leuzinger & Thomas, 2011; Beier et al., 2012).

Also, the temporal scale influences the outcome of an

experiment. A comparable set of factors and a minimal

experimental duration, for example, for all drought

experiments would therefore be desirable. However,

even then, most experiments would have to stop

after few years. This raises the question whether the

experiment actually simulates extreme situations or

long-term change and whether or not the system recov-
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ers after the experiment ends. The high diversity in the

response of growth parameters of oaks to drought as dis-

cussed in Kuster et al. (2012), shows that in experimental

conditions, for example treatment duration and inten-

sity, tree age or experimental set up, have to be consid-

ered in the evaluation of drought effects on trees. Thus,

it is crucial to assess what degree of change and what

temporal scale experiments cover if we want to evaluate

whether they actually simulate responses to changing

climatic variability, or rather to changing mean climate.

In a transplantation study, for example, the effect of a

drying and warming trend was obtained by comparing

tree performance in Rome (Italy), Tel Aviv (Israel), and

Yatir (Israel) along a precipitation gradient (Klein et al.,

under review). The sites differed significantly in their

mean annual precipitation, each representing a differ-

ent climate type, but the responses were interpreted as

drought acclimation. Results from this study captured

many plant adjustments that were induced by both

phenotypic plasticity and locally adapted ecotypes.

Such transplantation experiments along altitudinal or

latitudinal gradients do not require manipulation of the

environment and may be an alternative to laboratory/

greenhouse experiments. So far, transplantation experi-

ments have not been considered in comparative studies

of different artificial warming methods (e.g. Aronson &

Mcnulty, 2009). However, such experiments seem to be

well adapted especially for long-term experiments, as

they project a realistic simulation of future climate con-

ditions considering also the length of the growing per-

iod, one of the most important limiting factors in alpine

plant growth (Jonas et al., 2008). Similar to laboratory/

greenhouse experiments it is crucial that the results are

interpreted in terms of changing mean climate and

changing variability over well-defined temporal scales.

Modeling

Models can be used as diagnostic and predictive tools

that integrate results from experiments and observation

to gain mechanistic understanding and allow testing

hypotheses generated from field data, experiments, and

theory (Leuzinger & Thomas, 2011; Luo et al., 2011).

Models have to be designed for a specific purpose and

here we discuss which ones are suitable to simulate

plant responses to changing climate variability. This is

a highly relevant question, since models that account

for extremes may require a different structure, for

example an appropriate time resolution, to capture an

extreme precipitation event. Many forest models for

example use monthly input data and are thus unable to

account for short-term extreme events (e.g. Bugmann,

2001). Forcing such a model with daily weather instead

with monthly climate data improved its performanceT
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é

et
al
.(
20

12
)

U
n
cl
ea
r

© 2012 Blackwell Publishing Ltd, Global Change Biology, 19, 75–89

PLANT AND CHANGING CLIMATIC VARIABILITY 83



(Stratton et al., 2012). Zimmermann et al. (2009) argue

that for capturing some ecosystem responses even daily

climate data may be insufficient since they smooth

meteorological extremes.

Generally, effects of climate change on ecosystems

are analyzed by driving simulation models with output

from GCMs and regional climate models (RCMs). To

account for the uncertainty of climate change projec-

tions, besides different scenarios, also several GCMs (e.

g. Buisson et al., 2010) and different realizations of a

scenario may be used. Many models do not use the ori-

ginal GCM/RCM data at hourly resolution (which may

also not always be available), but only daily or monthly

aggregations and thus strictly speaking miss some of

the meteorological variability. The CARAIB dynamic

vegetation model (Otto et al., 2002; Laurent et al., 2008;

Dury et al., 2011), for example, derives daily values of

meteorological variables, as usual in large-scale simula-

tions, from monthly mean outputs from GCM/RCMs

using a stochastic weather generator (Hubert et al.,

1998). The sequences of daily temperature or precipita-

tion produced by the stochastic generator are renormal-

ized to the monthly values generated by the RCMs.

Thus, the precise day-to-day sequence of an extreme

event in the model, such as a drought period or a suc-

cession of heat wave days (Beniston et al., 2007; Déqué,

2007), depends on the distribution functions used in the

stochastic generator, although the monthly values of

the climate model are not altered. While evidently it is

challenging for such large-scale modeling efforts to

integrate high-frequency climate variability, these stud-

ies are necessary to assess different feedbacks of vegeta-

tion types (e.g. feedbacks of ecosystem response to

drying on near-surface temperature differ between for-

est and grassland ecosystems (Teuling et al., 2010) at

the global scale).

Also, species distribution models face the challenge

of including changing climate variability. Usually, they

use information on species distribution (both potential

from expert knowledge or forest communities, and

actual from inventories and landcover-data) together

with climate data to construct bioclimatic ranges (also

called climate envelopes). They show a two dimen-

sional frequency distribution of, for example tempera-

ture and precipitation, indicating the mean climatic

range, in which the analyzed species (potentially) exist.

Extrapolation of this information allows identifying

regions with comparable climate to, for example, esti-

mate a (extended) potentially occupied habitat (Guisan

& Zimmermann, 2000) or new growing areas outside

the recent (actual or potential) distribution (Miller et al.,

2004; Peters & Herrick, 2004). Also the match of actual

and future suitable ranges can be identified, classifying

species into tolerant or intolerant to expected climatic

conditions (Dunk et al., 2004; Gibson et al., 2004). This

provides further understanding about expanding or

shrinking habitats under changing climate (Erasmus

et al., 2002; Midgley et al., 2006). Usually, climate enve-

lopes are derived from mean values (e.g. mean temper-

ature) and are thus designed to assess impacts of

changes in mean climate. Consequently, especially

regions at the edge of the distribution range may

appear suitable, but in reality maximum or minimum

precipitation or temperature may determine the distri-

bution range (or other, non-climatic factors such as soil

type or herbivory). This can partly be circumvented by

including standard deviations as variables (Zimmer-

mann et al., 2009), and species distribution models

could also be built with extremes (e.g. maximum tem-

perature or minimum precipitation) to enhance the pre-

dictive power. Zimmermann et al. (2009) for example

found that incorporating climatic extremes slightly

improved models of species range limits, since it cor-

rected local over- and underprediction, but they also

argue that climate variability rather complements the

response to mean climate. Thus, including climate vari-

ability is one uncertainty of species distribution models

that has to be considered to assess compliance of cli-

mate envelopes (P. Gloning, S. Taeger, H. Seifert,

U. Schäffler, C. Kölling, M. Schilcher & A. Menzel, in

preparation).

Although generally process-based modeling is

required to derive climate-robust relationships to pre-

dict vegetation characteristics (Franklin, 1995; Guisan &

Zimmermann, 2000; Schwalm & Ek, 2001; Botkin et al.,

2007; Suding et al., 2008; Hajar et al., 2010), this is even

more evident when considering changing climate vari-

ability. Bartholomeus et al. (2011b) demonstrated that,

in contrast to process-based relationships between site

factors and vegetation characteristics, relations based

on indirect site factors produce systematic prediction

errors when applied outside their calibration rate, and

so cannot be used for climate projections. Mean

groundwater level, for example, is only an indirect site

factor related to plant performance, as it is the interac-

tion between soil-water-plant-atmosphere that essen-

tially determines if plants suffer from drought stress or

oxygen/waterlogging stress. When, for example, soil

moisture availability is too low to meet the water

demand for transpiration, a plant suffers from drought

stress (Schimper, 1903; Reddy et al., 2004). This so-

called physiological drought (Schimper, 1903), implies

that not only water availability but also vegetation’s

demand for water has to be considered. Instead, more

process-based explanatory variables are needed to pre-

dict the effects of changing climate variability on the

species composition of the vegetation. These explana-

tory variables should consider the interacting meteoro-
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logical, soil physical, microbial, and plant physiological

processes in the soil-plant-atmosphere system. Bartho-

lomeus et al. (2011a) did so for water-related stressors,

by simulating respiration reduction (reflecting the com-

bined effect of high temperature and low oxygen avail-

ability), and transpiration reduction (reflecting the

combined effect of high atmospheric water demand

and low water availability) for a reference vegetation.

The simulated stress for reference vegetation acts as a

habitat characteristic, that is a measure for the moisture

regime of the soil to which the actual vegetation will

adapt. The use of reference vegetation improves the

applicability of models in which stress measures are

implemented, especially in predicting climate change

effects (Dyer, 2009).

Combined approaches

Combined approaches unite experimental, observa-

tional, and/or modeling studies. A recent meta-analysis

shows that the temperature sensitivity of phenology in

warming experiments is underestimated in comparison

to observations (Wolkovich et al., 2012). It highlights

that observational studies are crucial to test whether or

not experimental results match observations in natural

systems. A combination of laboratory and field studies

is necessary to determine whether or not thresholds

detected in the laboratory are also likely to occur in the

field. This is especially relevant when calculating the

effects of changing climatic variability. We take leaf gas

exchange and ecosystem flux measurement data from

Brilli et al. (2011) as an example of how to link experi-

ments and observation at different scales and how an

experiment can complement observations to study

plant responses to climate variability. Figure 3 shows

that evapotranspiration measured in the field with the

eddy covariance method, was insensitive to soil drying

over the range of soil water contents occurring in the

field. The leaf gas exchange measurements during

the laboratory drought experiment when extended to

much drier conditions showed that the plant species

occurring at this site start to down-regulate stomatal

conductance at soil water contents close to the wilting

point – conditions that have never been reached in the

field during the observational period of 2001–2009.
Back-of-the-envelope calculations suggest that ca. 10

additional rain-free days would have been required

even during the 2003 and 2006 droughts in order for

plants at this site to experience gas exchange limita-

tions. Such information is crucial to assess whether

responses to changing mean climate or to changing

climate variability are measured.

Moreover, results can be extended to a larger spatial

scale, by combining simulation models with research

tools like raster GIS (Minacapilli et al., 2009; Bonfante

et al., 2011) and Digital Elevation Model (DEM) derived

analysis (Macmillan et al., 2000). Furthermore, studies

that combine observational or experimental results – at

field scale – with simulation models of hydro-thermal

regime – at landscape scale – allow to quantify the

effects of changing climate variability (Bonfante et al.,

2010). Riccardi et al. (2011) assessed the adaptive capac-

ity of olive cultivars to future climate by means of a

database of cultivars’ climatic requirements, combined

0

0.1

0.2

SW
C

 (
fr

eq
ue

nc
y)

0.00.10.20.30.40.5

Soil water content (m3 m–3)

E
T

 a
nd

 g
s (

re
la

tiv
e 

un
its

)

0.0

0.5

1.0

1.5

2.0

Observation: Ecosystem-scale evapotranspiration (ET)
Experiment: Leaf-scale stomatal conductance (gs)

Conditions covered by experiment (extreme variability)

Conditions covered by observations (natural variability)

Fig. 3 Evapotranspiration measured in the field with the eddy covariance method (black filled dots) over the range of soil water

contents (gray bars) occurring in the field and stomatal conductance measured in a laboratory experiment (black open dots). Data and

further descriptions are available in Brilli et al. (2011). SWC, soil water content.

© 2012 Blackwell Publishing Ltd, Global Change Biology, 19, 75–89

PLANT AND CHANGING CLIMATIC VARIABILITY 85



with a spatially distributed model of the soil–plant–
atmosphere system. They set up a database on climatic

requirements and defined critical environmental condi-

tions using two quantitative indicators of soil water

availability (the relative evapotranspiration deficit, i.e.

the ratio of actual to maximum evapotranspiration of

the crop, and the relative soil water deficit, i.e. the ratio

between the actual and the maximum volume of soil

water available to plants taking into account the water

retention characteristics, to get a comparable indicator

across soil types). The response in terms of yield of sev-

eral olive cultivars to these indicators was determined

through the re-analysis of experimental data derived

from scientific literature (Moriana et al., 2003; Tognetti

et al., 2006). This database on cultivars’ requirements

was used in combination with a plant-soil-atmosphere

model (SWAP, Van Dam et al., 2008). The model was

used to describe the soil water regime at landscape

scale under future climate scenarios from statistically

down-scaled GCMs, resulting in several realizations

(Tomozeiu et al., 2007). The indicators of soil water

availability were thus determined in different soil units,

and were compared with the limits set for each cultivar.

A cultivar was considered tolerant to expected climatic

conditions when the indicator values resulted above

critical values in at least 90% of realizations. Although

Riccardi et al. (2011) did not further specify the climate

scenarios and realizations in terms of changing mean or

climate variability, such analysis could be easily linked

to the soil water availability indicators and the related

limits for cultivars under climate change.

Conclusions

In this review, we have emphasized that changing cli-

matic variability and the resulting extreme (climatic)

conditions are highly relevant for different plant pro-

cesses at different scales in comparison to changes in

mean climate (although mean and variability may not

be fully independent of each other). We have also

shown how to quantify responses of plants to changing

climate variability: Although experiments seem to be

well suited to study the effects of changing climatic var-

iability it is important to remember that they only con-

trol a limited number of factors. For modeling studies

we stress that the model structure should allow inte-

grating extreme events (e.g. by having the appropriate

temporal resolution). These points highlight the impor-

tance of linking experiments, observations, and model-

ing studies as well as assessing study results in light of

the background variability of the system and the tem-

poral scale considered. We also identified several

research gaps. Although knowledge of plant responses

to changing climatic variability for individual processes

has to be consolidated, we still lack knowledge on how

interactions of these processes and other environmental

variables play out at different hierarchical levels and in

combination with changing mean climatic conditions.

Similarly, although there is room to improve individual

methods to study changing climatic variability, there is

a particular need to integrate observations, experiments

and model results across scales.

Ultimately, the information on extremes and corre-

sponding vulnerability of plants are crucial to iden-

tify which species and regions (and thus which

ecosystem services and functions) are most at risk

from climate change. Moreover, designing ecosys-

tem-based adaptation strategies to climate change

relies on understanding the interactions between spe-

cies’ natural adaptive capacity and climate change.

Analyzing plant responses to climate variability is

important to determine drivers of ecosystem dynam-

ics over time (slow vs. fast processes) and highlights

the importance of extremes to assess the impacts of

environmental change on socio-ecological systems.
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