Atmospheric-Ecosystem CO, Exchange in Sparse Arid Shrublands Across the Great Basin USA **Over Multiple Years: Identifying Patterns and Mechanisms** John A. Arnone III¹, Richard L. Jasoni¹, Jessica D. Larsen¹, Lynn F. Fenstermaker¹, Georg Wohlfahrt² ¹Desert Research Institute, ²University of Innsbruck

Introduction Why should we care about deserts?

- Cover >30% of Earth's land surface; expanding because of desertification (**Fig. 1**)
- Existing deserts and semi-arid ecosystems may become more "woody"
- Responsive to global change
- New data suggests net CO₂ uptake may be higher than expected
- 37% of the world's population lives near deserts
- Contains 8% of the world's C stores biomass = 8 Gt, soils = 191 Gt
- Only a few flux sites in arid regions (Fig. 2)

Figure 1. Distribution of non-polar arid land.

Figure 2. World-wide FLUXNET (a) and Nevada (b) arid ecosystem study sites.

Objectives

- To explore new empirical evidence on net ecosystem CO₂ exchange that suggests deserts of the world may be important sinks for CO_2 (using the available annual & multi-year data set)
- To evaluate evidence on modulating role of precipitation
- To look at potential effects of global change factors ([CO₂], invasive spp., precipitation)

Methods

X13

Eddy covariance

- CSAT3 sonic anemometer
- LI-7500 open path infrared gas analyzer
- CR5000 data logger

EC data processing

Dominant Shrub Species

Mojave
Larrea tridentate
Lycium andersonii
Ambrosia dumosa

Great Basin Artemisia tridentate Sarcobatus vermiculatus Chrysothamnus nauseosus

• Raw data (10 Hz) were post-processed using the software EdiRe (University of Edinburgh, UK) and all standard corrections made according to Wohlfahrt et al. 2008

Figure 3. Photographs of study site vegetation (**a**) and cumulative NEP (blue line), daily NEE (green line), air temperature (purple line), and daily precipitation (orange bars) (**b**) from six eastern Nevada (Great Basin) ecosystems.

Mojave Desert

Figure 4. Photograph of study site vegetation and eddy covariance instrumentation (**a**) and cumulative NEP (blue line), daily NEE (green line), and daily precipitation (orange bars) (**b**) for three years of data collection from a Mojave Desert ecosystem.

Table 1. NEP from two Mojave Desert, six Great Basin and one Sonoran Desert study site.

Desert	Location	Year	NEP (g C m ⁻² yr ⁻¹)	Notes	Reference
Mojave Desert	S. Nevada *	2004	-127	FACE Amb CO ₂ - dome	Jasoni et al. 2005
			-90	FACE Elev CO ₂ - dome	
		2005	-180	FACE Amb CO ₂ - dome	
			-93	FACE Elev CO ₂ - dome	
		2005	-102	MGCF-EC	Wohlfahrt et al. 2008
		2006	-110	MGCF-EC	
		2007	-81	MGCF-EC	
Great Basin	E. Nevada	2006	-18	SPVFT01 - FC	Unnublished
		2000	59	SDVET02 EC	(Arnono/Jasoni)
			-59	WRVFT01 - FC	(Amone/Jasom)
		2007	-53	SV5 - EC	
			-59	SV6 - EC	
			-7	SV7 - EC	
	N. Nevada	2001	-33	Post-fire - dome	Obrist et al. 2003
			20	Shrub - dome	
		2004	49	Post-fire - dome	Unpublished
			56	Shrub - dome	(Jasoni/Arnone)
Sonoran	* Baia California	2002	-30	FC	Hastings of al 2005
	Masta	2002	-53		nasinys et al. 2005
	MEXICO	2003	-52	EC	

Figure 7. Schematic of carbon fluxes in a Mojave Desert ecosystem and photographs (insets) of woody biomass increase between 1964 and 2003.

Ecological feedbacks to desert C balance

Growth of invasive grass stimulated in wetter year under future CO₂ levels

Figure 8. Photographs of invasive grass species (*Bromus madritensis*) during a dry (left panel) and wet (right panel) year in a Mojave Desert ecosystem. Inset indicates large C losses from increased fire potential with increased invasive grass species growth.

How much might deserts contribute to global NEP? • Average NEP of these sites in Table 1 = -54 g C m⁻² yr⁻¹ $= -54,000,000 \text{ g C km}^{-2} \text{ yr}^{-1}$ • <u>Arid shrublands</u> = 20% of Earth's land surface 20% of 148,939,100 km² $= 29,787,280 \text{ km}^2 \text{ x} -54,000,000 \text{ g} \text{ C} \text{ km}^{-2} \text{ yr}^{-1}$ = **1.61 Gt C yr**⁻¹ = 22% of anthropogenic CO₂ emissions How much might deserts contribute to global NEP? • Average NEP of these sites (*) in Table 1 = -75 g C m⁻² yr⁻¹ = -75,000,000 g C km⁻² yr⁻¹ • <u>Arid & semi-arid</u> ecosystems ca. 30% of Earth's land surface 30% of 148,939,100 km² $= 44,681,730 \text{ km}^2 \text{ x} -75,000,000 \text{ g} \text{ C} \text{ km}^{-2} \text{ yr}^{-1}$ = 3.35 Gt C yr⁻¹ = 47% of anthropogenic CO₂ emissions **Summary and Conclusions**

- . Deserts may be playing a much larger role in modulating global atmospheric CO₂
- 2. Must still determine where the NEP carbon is going in the ecosystem (NPP – vascular plants, autotrophic cryptobiotic crusts)

References

Beatley JC (1980) Fluctuations and stability in climax shrub and woodland vegetation of the Mojave, Great-Basin and transition deserts of southern Nevada. Israel Journal of Botany, 28: 149-168.

Hastings, SJ, Oechel WC, Muhlia-Melo A (2005) Diurnal, seasonal and annual variation in the net ecosystem CO₂ exchange of a desert shrub community (Sarcocaulescent) in Baja California, Mexico. *Global Change Biology*, **11**: 927-939. Jasoni, RL, Smith SD, Arnone JA III (2005) Net ecosystem CO₂ exchange in Mojave Desert shrublands during the eighth year of exposure to elevated CO₂. *Global Change Biology*, **11**: 749-756.

Obrist, D, Delucia EH, Arnone JA III (2003) Consequences of wildfire on ecosystem CO₂ and water vapor fluxes in the Great Basin. Global Change Biology, 9: 563-574.

Smith SD, Huxman TE, Zitzer SF et al. (2000) Elevated CO₂ increases productivity and invasive species success in an arid ecosystem Nature 408 79-82

Throop HL, and Archer SR (2008) Shrub (Prosopis velutina) encroachment in a semidesert grassland: spatial-temporal changes in soil organic carbon and nitrogen pools. Global Change Biology, 14: 2420-2431.

Webb RH, Murov MB, Esque TC et al. (2003) Perennial vegetation data from permanent plots on the Nevada Test Site, Nye County, Nevada. U.S. Geological Survey Open-File.

Wohlfahrt G, Fenstermaker LF, Arnone JA III (2008) Large annual net ecosystem CO₂ uptake of a Mojave Desert ecosystem. Global Change Biology, **14**: 1475-1487.