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BACKGROUND Volatile organic compounds (VOCs) have _ has a lifetime of less than one day and _ stays considerably longer in the
received increasing attention in the past two decades due to their role in plays an important role as a precursor of ozone, peroxyacetylnitrate ’ atmosphere than acetaldehyde with a lifetime of 53 days and is a major
atmospheric chemistry . Plants emit a wide spectrum of biogenic VOCs and hydrogen radicals * and is considered a hazardous air pollutant. source of PAN and hydrogen oxide radicals . Land ecosystems can act
to the atmosphere, and although anthropogenic sources can dominate in The global source is dominated by atmospheric production (< 60 % %), both as major sources and sinks, whereby pathways from which
urban areas, terrestrial vegetation is the main source on a global scale 2. but plants represent a non-negligible source (~ 10 % 8). During acetone emissions can arise are currently poorly understood 3.
In the past, most studies focused on hydrocarbon compounds such as periods of high soil water content when the roots are oxygen limited Acetone is produced as a byproduct from the cell walls from
isoprenoids, but recently there is a growing interest in a small group of acetaldehyde is produced through oxidation of ethanol which is cyanogenic plants and was reported to be light dependent 13.
biogenic oxygenated VOCs 3 (BOVOCs) which have been measured in transported from the roots to the leaves °. Production of acetaldehyde
surprising abundance throughout the remote troposphere *. has also been reported during light-dark transitions by a pyruvic acid
overflow mechanism !°. Dry deposition to land has been reported
BOVOCs include three compounds: methanol, acetaldehyde and before 11, but is considered a minor sink on a global scale. METHODS
acetone. Their combined biogenic source strength amounts to around Acetaldehyde and acetone
268 Tg C y1, which is about half the source strength of isoprene. Previous fluxes were measured above a managed, temperate
studies have shown that land ecosystems can act both as sources and < ' mountain grassland in Stubai Valley (Tyrol, Austria)
sinks for all three species 658, \ ‘,1,;’3?3.‘_"""5 ?‘ >, during two growing seasons (2008 and 2009). Half-
\ > vs;f‘.{:“;’f}:‘\, P hourly flux values were calculated by means of the
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