

Off-season carbon dioxide exchange of a temperate mountain grassland

Georg Wohlfahrt

Group, Institute of Ecology, University of Innsbruck

Warming up ...

FAQ 3.1 Fig. 1, WG1 IPCC, 2007

Plant development and temperature

Menzel et al. (2006)

Change in onset, end and duration of growing season

Jeong et al. (2011)

Does this lead to more net CO₂ uptake?

Piao et al. (2008)

Dragoni et al. (2011)

 \succ Quantify the sensitivity of the off-season CO₂ exchange of a seasonally snow-covered ecosystem to temperature. **Predict off-season CO**, exchange under warmer future conditions. **Determine limits of warming effects on growing season** length and off-season CO₂ exchange imposed by day length.

Study sites

Study site

- temperate mountain grassland
- MAT 6.5° C, MAP 852 mm
- 3 cuts/year
- CO₂ and energy flux measurements: 2001-ongoing

Overview of CO₂ exchange

Overview of CO₂ exchange

 $NEE = \overline{NEE_d}t_d + \overline{NEE_n}(1-t_d)$

Spring and autumn CO₂ exchange

$$\overline{NEE} = a + b \ e^{cT_a}$$

Limits to warming effects

Model validation

Climate scenarios (A1B scenario, 1961-1990 vs. 2021-2050)

Simulated off-season CO₂ exchange

ETHZ-CLM

Off-season CO₂ exchange

Results

		Air temperature (°C)			Snow cover		CUP	Net ecosystem CO ₂ exchange (gC m ⁻²)			
		ON	DJF	MA	Begin (DOY)	End (DOY)	Begin (DOY)	Autumn	Winter	Spring	Total
AITCCLM	1961-1990	4.4 ± 1.3	-2.6 ± 1.3	3.0 ± 1.3	313.2 ± 14.3	81.2 ± 13.3	109.1 ± 6.7	71.6 ± 23.4	151.6 ± 24.9	15.8 ± 11.6	239.0 ± 9.4
	2021-2050	6.1 ± 1.6	-1.0 ± 1.1	4.3 ± 1.6	322.3 ± 14.5	65.8 ± 15.8	102.1 ± 4.9	90.0 ± 26.1	123.8 ± 23.1	25.6 ± 19.1	239.3 ± 14.9
	Δ	1.6	1.6	1.4	9.0	-15.4	-7.0	18.4	-27.8	9.8	0.3 (-0.8) ^a
CNRMRM4.5	1961-1990	4.1 ± 1.4	-2.8 ± 1.3	3.0 ± 1.1	317.2 ± 16.6	81.9 ± 13.5	110.7 ± 7.9	76.3 ± 25.6	147.8 ± 24.9	14.9 ± 11.8	239.0 ± 10.0
	2021-2050	5.6 ± 1.0	-1.3 ± 1.0	4.0 ± 1.3	320.2 ± 15.2	71.1 ± 11.9	106.5 ± 6.6	84.2 ± 25.2	132.1 ± 22.6	20.9 ± 13.7	237.2 ± 7.2
	Δ	1.5	1.5	1.0	2.9	-10.8	-4.2	7.9	-15.7	5.9	-1.8 (-0.9) ^a
DMIHIRHAM	1961-1990	4.2 ± 1.3	-2.5 ± 0.8	3.1 ± 1.4	311.6 ± 13.9	79.2 ± 13.0	108.7 ± 7.1	67.7 ± 22.5	151.2 ± 21.4	17.5 ± 13.4	236.4 ±9.4
	2021-2050	5.4 ± 1.5	$\textbf{-1.6} \pm \textbf{1.1}$	4.3 ± 1.3	315.6 ± 14.7	63.1 ± 15.8	106.0 ± 8.5	77.2 ± 24.3	128.3 ± 25.2	27.9 ± 17.9	233.4 ± 10.7
	Δ	1.2	0.9	1.1	4.1	-16.1	-2.7	9.5	-23.0	10.4	-3.0 (-0.6) ^a
ETHZCLM	1961-1990	4.4 ± 1.4	-2.4 ± 1.4	3.0 ± 1.5	312.7 ± 14.3	81.6±15.6	108.7 ± 7.9	71.1 ± 23.4	152.6 ± 26.6	15.2 ± 13.1	238.9 ± 11.4
	2021-2050	6.2 ± 1.5	-0.6 ± 1.3	4.5 ± 1.8	319.8 ± 15.8	54.9 ± 21.2	102.5 ± 5.9	85.7 ± 27.4	114.2 ± 33.9	37.9 ± 27.3	237.8 ± 17.1
	Δ	1.8	1.8	1.5	7.1	-26.6	-6.2	14.6	-38.4	22.7	-1.1 (-0.7) ^a
KNMIRACMO	1961-1990	4.1 ± 1.2	-2.4 ± 1.1	3.4 ± 1.3	310.1 ± 14.7	77.6 ± 10.5	107.5 ± 6.7	65.7 ± 23.5	151.1 ± 20.3	17.4 ± 10.8	234.2 ± 10.7
	2021-2050	5.3 ± 1.5	-1.2 ± 1.0	4.3 ± 1.7	318.8 ± 14.0	63.8 ± 13.2	104.5 ± 8.2	81.4 ± 23.1	125.4 ± 22.7	27.3 ± 15.4	234.1 ± 10.6
	Δ	1.3	1.2	0.9	8.6	-13.9	-3.0	15.7	-25.6	9.9	0.0 (-0.6) ^a

^a ... number in parenthesis gives the additional amount of carbon (gC m⁻²) that could be gained due to the earlier start of the CUP in 2021-2050 as compared to 1961-1990; autumn is defined between the third harvest (assumed to occur on DOY 265) and the establishment of a permanent snow cover, winter corresponds to the time of permanent snow cover and spring is defined between snow melt and the beginning of the CUP, and the column total refers to the sum of the three.

Take-home message

 \succ Grassland off-season CO₂ exchange resilient against climate change scenarios predicted up to 2050. End of CUP is determined by timing of final cut – will farmers adapt management in future? Advancement of start of CUP minor under climate change scenarios. A critical day length exists below which no net carbon gain occurs no matter what the temperature is.

Acknowledgements

Co-authors: University of Innsbruck, Institute of Ecology: Albin Hammerle, Lukas Hörtnagl, Alois Haslwanter, Christoph Irschick

University of Graz, Wegener Center for Climate and Global Change: Matthias Themeßl, Andreas Gobiet

Funding:

Sparkling Science Project "GrassClim – Interactive effects of climate and land use on the carbon dioxide source/sink strength and yield of mountain grasslands" funded by BM.W_F

Numerous other projects that have funded the long-term flux measurements at Neustift

www.biomet.co.at

