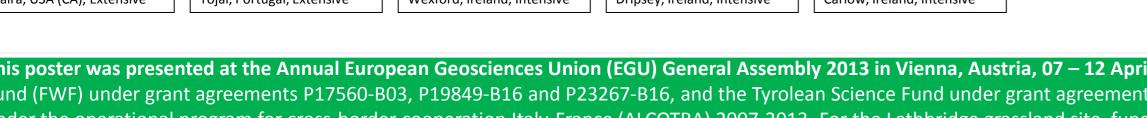
# Convergence of potential net ecosystem production in C<sub>3</sub> grasslands Peichl, Matthias<sup>1,2\*</sup>, Sonnentag, Oliver<sup>3</sup>, Wohlfahrt, Georg<sup>4</sup>, Flanagan, Lawrence B.<sup>5</sup>, Baldocchi, Dennis D.<sup>6</sup>, Kiely, Gerard<sup>2</sup>, Galvagno, Marta<sup>7</sup>, Gianelle, Damiano<sup>8</sup>, Marcolla, Barbara<sup>8</sup>, Pio, Casimiro<sup>9</sup>, Migliavacca, Mirco<sup>10</sup>, Jones, Michael B.<sup>11</sup>, Saunders, Matthew<sup>12</sup>

1\*Swedish University of Agricultural Sciences, Dept. of Forest Ecology & Management, Umeå, Sweden; e-mail: matthias.peichl@slu.se <sup>2</sup>University College Cork, Dept. of Civil and Environmental Engineering, Cork, Ireland; <sup>3</sup>University of Lethbridge, AB, Canada; <sup>4</sup>University of California at Berkeley, Dept. of Environmental Engineering, Cork, Ireland; <sup>3</sup>University of California at Berkeley, Dept. of Environmental Engineering, Cork, Ireland; <sup>3</sup>University of Lethbridge, AB, Canada; <sup>4</sup>University of California at Berkeley, Dept. of Environmental Engineering, Cork, Ireland; <sup>3</sup>University of Lethbridge, AB, Canada; <sup>4</sup>University of California at Berkeley, Dept. of Environmental Engineering, Cork, Ireland; <sup>4</sup>University of California at Berkeley, Dept. of Environmental Engineering, Cork, Ireland; <sup>4</sup>University of California at Berkeley, Dept. of Environmental Engineering, Cork, Ireland; <sup>4</sup>University of California at Berkeley, Dept. of Environmental Engineering, Cork, Ireland; <sup>4</sup>University of California, Cork, Ireland; <sup>4</sup>University, C Science, Policy and Management, Ecosystem Sciences Division, Berkeley, CA, USA; <sup>7</sup>Environmental Protection Agency of Aosta, Italy; <sup>8</sup>Fondazione Edmund Mach, IASMA Research and Innovation, Berkeley, CA, USA; <sup>7</sup>Environmental Protection Agency of Aosta, Italy; <sup>8</sup>Fondazione Edmund Mach, IASMA Research and Innovation, Berkeley, CA, USA; <sup>7</sup>Environmental Protection Agency of Aosta, Italy; <sup>8</sup>Fondazione Edmund Mach, IASMA Research and Innovation, Berkeley, CA, USA; <sup>7</sup>Environmental Protection Agency of Aosta, Italy; <sup>8</sup>Fondazione Edmund Mach, IASMA Research and Innovation, Berkeley, CA, USA; <sup>7</sup>Environmental Protection Agency of Aosta, Italy; <sup>9</sup>University of Aveiro, and Innovation Centre, Sustainable Agro-ecosystems and Bioresources Dept., San Michele all'Adige, (TN), Italy; <sup>9</sup>University of Aveiro, and Innovation Centre, Sustainable Agro-ecosystems and Bioresources Dept., San Michele all'Adige, (TN), Italy; <sup>9</sup>University of Aveiro, and Innovation Centre, Sustainable Agro-ecosystems and Bioresources Dept., San Michele all'Adige, (TN), Italy; <sup>9</sup>University of Aveiro, and Innovation Centre, Sustainable Agro-ecosystems and Bioresources Dept., San Michele all'Adige, (TN), Italy; <sup>9</sup>University of Aveiro, and Innovation Centre, Sustainable Agro-ecosystems and Bioresources Dept., San Michele all'Adige, (TN), Italy; <sup>9</sup>University of Aveiro, and Innovation Centre, Sustainable Agro-ecosystems and Bioresources Dept., San Michele all'Adige, (TN), Italy; <sup>9</sup>University of Aveiro, and Innovation Centre, Sustainable Agro-ecosystems and Bioresources Dept., San Michele all'Adige, (TN), Italy; <sup>9</sup>University of Aveiro, and Innovation Centre, Sustainable Agro-ecosystems and Bioresources Dept., San Michele all'Adige, (TN), Italy; <sup>9</sup>University of Aveiro, and Innovation, and Innovatio CESAM & Dept. of Environment, Aveiro, Portugal; <sup>10</sup>European Commission, DG-JRC, Institute for Environmental Science, Dublin, Ireland; <sup>12</sup>University College Dublin, School of Biology & Environmental Science, Dublin, Ireland; <sup>10</sup>European Commission, DG-JRC, Institute for Environment and Sustainability, Climate Change and Risk Management Unit, Ispra, VA, Italy; <sup>11</sup>University College, Dublin, Ireland; <sup>12</sup>University College Dublin, School of Biology & Environmental Science, Dublin, Ireland; <sup>12</sup>University College, Dublin, Ireland; <sup>12</sup>University College, Dublin, Ireland; <sup>12</sup>University College, Dublin, Ireland; <sup>14</sup>University College, Dublin, Ireland; <sup>14</sup>University, Ir

### **1. Background**

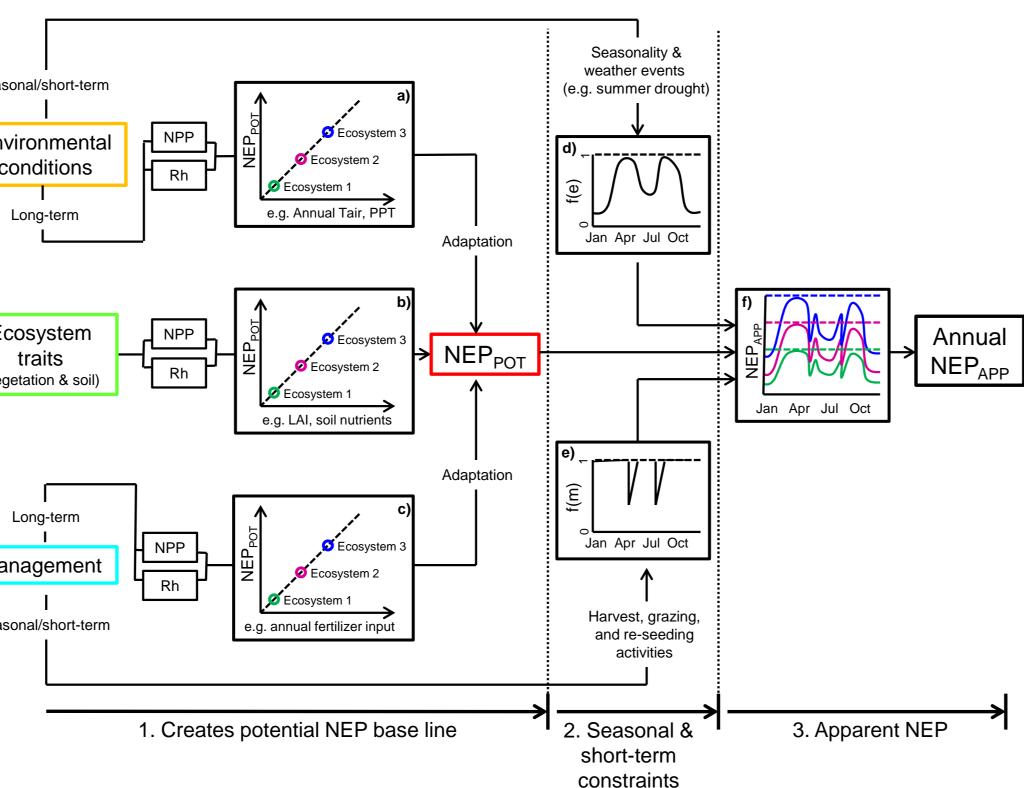
**BG2.11** 

EGU2013


-7127

Metabolic theory and body size constraints on biomass production and decomposition suggest that differences in the intrinsic potential net ecosystem production (NEP<sub>POT</sub>) should be small among contrasting  $C_3$  grasslands and therefore unable to explain the wide range in the annual apparent net ecosystem production (NEP<sub>APP</sub>) reported by previous studies (e.g. Gilmanov et al. 2010). In a recent synthesis study (Peichl et al., 2013), we estimated NEP<sub>POT</sub> for nine C<sub>3</sub> grasslands under contrasting climate and management regimes using multi-year eddy covariance data.

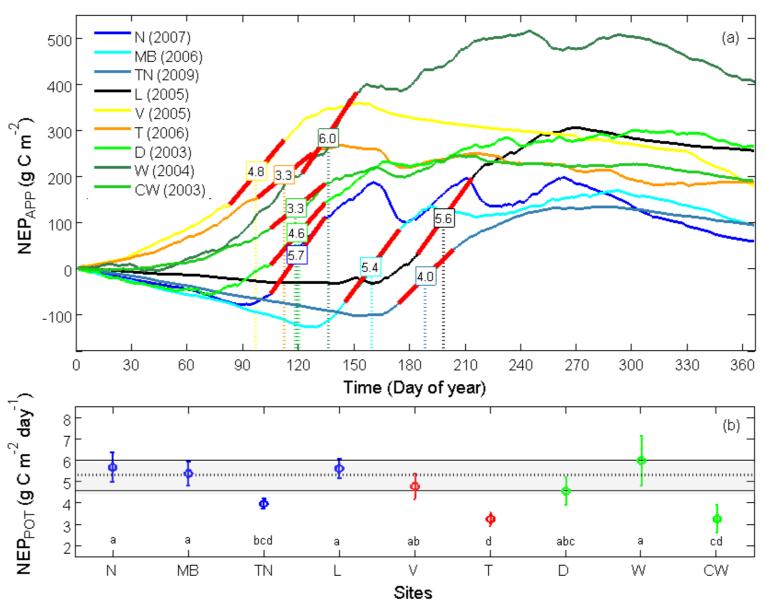
## **2. Study sites**


Table 1: Site characteristics of the nine investigated grassland sites Neustift, N; Monte Bondone, MB; Torgnon, TN; Lethbridge, L; Vaira, V; Tojal, T; Dripsey, D; Wexford, W; and Carlow, CW.

| Site                                     | Ν                  | MB           | TN                    | L                  | V                      | Т                       | D                        | W                                                            | CW          |
|------------------------------------------|--------------------|--------------|-----------------------|--------------------|------------------------|-------------------------|--------------------------|--------------------------------------------------------------|-------------|
| Country                                  | Austria            | Italy        | Italy                 | Canada (AB)        | USA(CA)                | Portugal                | Ireland                  | Ireland                                                      | Ireland     |
| Coordinates                              | 47°07' N           | 46° 01' N    | 45° 50' N             | 49° 43' N          | 38 °41' N              | 38°28′ N                | 51°59' N                 | 52°30' N                                                     | 52°52′ N    |
|                                          | 11°19' E           | 11° 2' E     | 7° 34' E              | 112° 56' W         | 120° 95' W             | 8°01′ W                 | 8°45' W                  | 6°40' W                                                      | 6°54′ W     |
| Elevation                                | 970                | 1550         | 2160                  | 951                | 129                    | 190                     | 195                      | 57                                                           | 56          |
| (m a.s.l.)                               |                    |              |                       |                    |                        |                         |                          |                                                              |             |
| Climate region                           | Cold-              | Cold-        | Cold-                 | Cold-              | Mediterranean          | Mediterrane             | Maritime                 | Maritime                                                     | Maritime    |
|                                          | Temperate          | Temperate    | Temperate             | Temperate          |                        | an                      |                          |                                                              |             |
| Mean $T_a$ (°C)                          | 6.5                | 5.5          | 3.1                   | 5.4                | 16.5                   | 15.5                    | 9.4                      | 10.1                                                         | 9.4         |
| Mean PPT                                 | 852                | 1189         | 920                   | 402                | 562                    | 669                     | 1207                     | 877                                                          | 824         |
| (mm)                                     |                    |              |                       |                    |                        |                         |                          |                                                              |             |
| Snow cover<br>and/or T < 0°C             | Nov - Apr          | Nov - Apr    | Nov - May             | Oct - Apr          | none                   | none                    | none                     | none                                                         | none        |
| Management                               | intensive          | extensive    | abandoned             | unmanaged          | extensive              | extensive               | intensive                | intensive                                                    | intensive   |
|                                          | meadow             | meadow       | pasture               | prairie            | pasture                | pasture                 | meadow/                  | meadow/                                                      | meadow/     |
|                                          |                    |              | r                     | r                  | 1                      | r                       | pasture                  | pasture                                                      | pasture     |
| Nitrogen                                 | manure             | low          | none                  | none               | none                   | none                    | ~150-250                 | ~200-300                                                     | ~200        |
| fertilizer                               |                    | 2011         |                       |                    |                        |                         | (inorganic,              | (inorganic,                                                  | (inorganic, |
| application                              |                    |              |                       |                    |                        |                         | manure,                  | manure,                                                      | manure,     |
| (kg N ha <sup>-1</sup> y <sup>-1</sup> ) |                    |              |                       |                    |                        |                         | slurry)                  | slurry)                                                      | slurry)     |
| Soil type                                | Fluvisol           | Туріс        | Cambisol              | Orthic             | Lithic                 | Luvisol                 | Gleysol                  | (Gleyic)                                                     | Calcic      |
| son type                                 | 11011501           | Hapludalfs   | Cambisol              | chernozem          |                        | Luv1501                 | Oleyson                  | (Gleyic)<br>Cambisol                                         | Luvisol     |
| Soil toxture                             | (candy)            | -            | loamy cond            | clay loam          | haploxerepts silt loam | sandy (alay)            | loam                     |                                                              | sandy loam  |
| oil texture                              | (sandy)<br>loam    | loam         | loamy sand            | -                  |                        | sandy (clay)<br>loam    |                          | loam                                                         |             |
| Soil C                                   | 8.1 (0-            | 8.7 (0-20cm) | 2.8 (0-20cm)          | 3.7 (0-10cm)       | 6.0 (0-30cm)           | 3.3 (0-                 | 9.0 (0-                  | 3.9 (0-                                                      | 4.2 (0-     |
| kg C m <sup>-2</sup> )                   | 30cm)              |              |                       |                    |                        | 30cm)                   | 30cm)                    | 10cm)                                                        | 10cm)       |
| oil N                                    | n.a.               | 0.76 (0-     | 0.22 (0-              | n.a.               | 0.60 (0-30cm)          | n.a.                    | 0.76 (0-                 | 0.34 (0-                                                     | 0.42 (0-    |
| kg N m <sup>-2</sup> )                   |                    | 20cm)        | 20cm)                 |                    |                        |                         | 30cm)                    | 10cm)                                                        | 10cm)       |
| Max. LAI $m^2 m^{-2}$ )                  | 5.5                | 4.7          | 2.8                   | 1.2                | 2.7                    | 2.3                     | 2.5                      | na                                                           | 5.1         |
| Dominant                                 | Dactylis           | Festuca      | Nardus                | Agropyron          | Brachypodium           | Avena                   | Lolium                   | Lolium                                                       | Lolium      |
| species                                  | glomerata          | rubra        | stricta               | dasystachyun       | distachyon             | barbata                 | perenne                  | perenne                                                      | perenne     |
| Data coverage                            | 2001 - 2009        | 2003 - 2009  | 2009 - 2010           | 1999 - 2006        | 2001-2007              | 2005 - 2008             | 2003-2006,<br>2008, 2009 | 2004-2006,<br>2008, 2009                                     | 2003, 2008  |
| References                               | Wohlfahrt et       | Marcolla et  | Migliavacca           | Flanagan &         | Ma et al.              | Aires et al.            | Peichl et                | Peichl et                                                    | Flechard et |
|                                          | <i>al.</i> (2008b) | al. (2011)   | <i>et al.</i> (2011a) | Adkinson<br>(2011) | (2007)                 | (2008)                  | al. (2011)               | al. (2012)                                                   | al. (2007)  |
| References<br>CT-A                       | 0                  |              | 0                     | Adkinson           | (2007)                 |                         |                          | al. (2012)                                                   | al. (2007)  |
|                                          |                    |              |                       |                    |                        |                         |                          | Maritime (MAR)<br>Cold-Temperate (CT)<br>Mediterranean (MED) |             |
|                                          |                    |              |                       | ** C ***           |                        |                         |                          |                                                              |             |
| Neustift, Austria,                       | Intensive          | Monte Bondon | e, Italy, Ext.        | Torgnon, Italy, u  |                        | Lethbridge, Can         | ada, unman.              | Mediterran                                                   |             |
| Neustift, Austria,                       | Intensive          |              | e, Italy, Ext.        | Torgnon, Italy, u  |                        | Lethbridge, Cana<br>MAR | ada, unman.              |                                                              |             |
|                                          |                    | Monte Bondon |                       |                    |                        |                         |                          | Mediterran                                                   |             |



### **3. Concept of potential NEP**


The three main controls on NPP and R<sub>h</sub> that subsequently determine NEP<sub>POT</sub> include the stationary long-term effects from i) environmental conditions, ii) management practices and iii) ecosystem traits. NEP<sub>APP</sub> then deviates from NEP<sub>POT</sub> as a function (f) of seasonal and short-term constraints from environmental conditions (e) and management (m) events (Fig. 1).



gure 1: Conceptual diagram outlining the interactions between ecosystems traits, nvironmental conditions, management, net primary production (NPP), heterotrophic espiration (R<sub>h</sub>), potential net ecosystem production (NEP<sub>POT</sub>) and apparent NEP (NEP<sub>APP</sub>).

NEP<sub>POT</sub> was determined for each site as the maximum of all 30lay averages of NEP<sub>APP</sub> across all years using a moving window. hus, we assume that the maximum *apparent* rate occurring inder optimum conditions within a multi-year time series should approach or ideally equal the *potential* rate. Furthermore, GEP<sub>APP</sub> nd  $ER_{APP}$  at the time of  $NEP_{POT}$  were denoted as  $GEP_{POT}$  and R<sub>POT</sub>, respectively.

NEP<sub>POT</sub> was within a narrow range of 4.6 to 6.0 g C m<sup>-2</sup> d<sup>-1</sup> and not significantly different for six out of nine sites (Fig. 2).



**Figure 2:** (a) Cumulative NEP<sub>APP</sub> for years when NEP<sub>POT</sub> occurred at the grasslands sites; (b) NEP<sub>POT</sub> for grasslands in the cold-temperate (blue), Mediterranean (red), and maritime (green) regions; grey band indicates the convergence zone for NEP<sub>POT</sub>.

NEP<sub>POT</sub> occurred when the 30-day mean GEP<sub>APP</sub> was equal or close to its maximum (Fig. 3). NEP<sub>POT</sub> occurred close to the maximum 30day mean ER<sub>APP</sub> at the extensive sites, but preceded the peak of 30day mean ER<sub>APP</sub> at the meadows and intensively managed pastures.

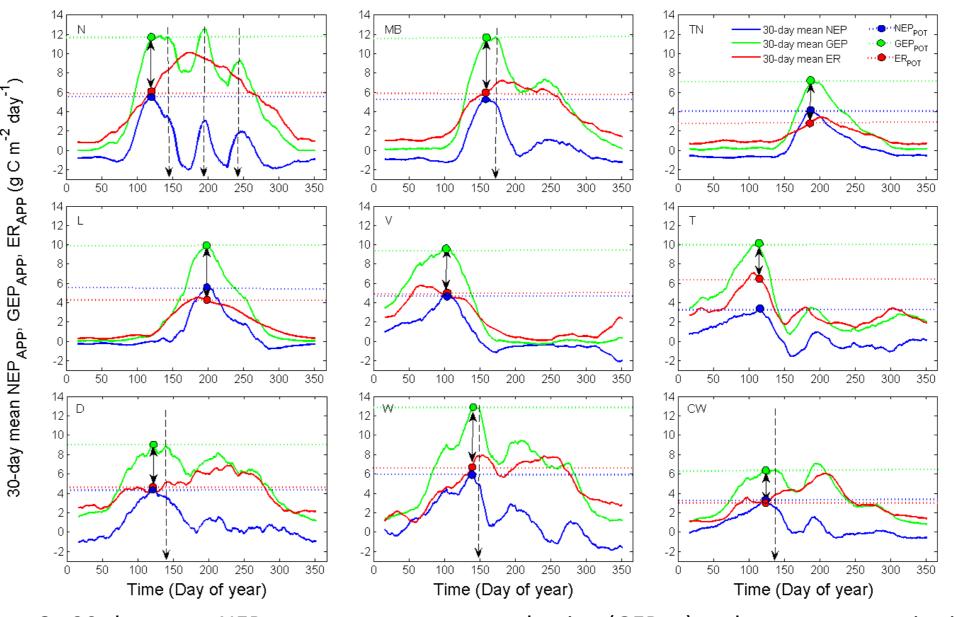



Figure 3: 30-day mean NEP<sub>APP</sub>, gross ecosystem production (GEP<sub>APP</sub>) and ecosystem respiration (ER<sub>APP</sub>) at the nine sites (see Table 1) during the year in which NEP<sub>POT</sub> occurred.

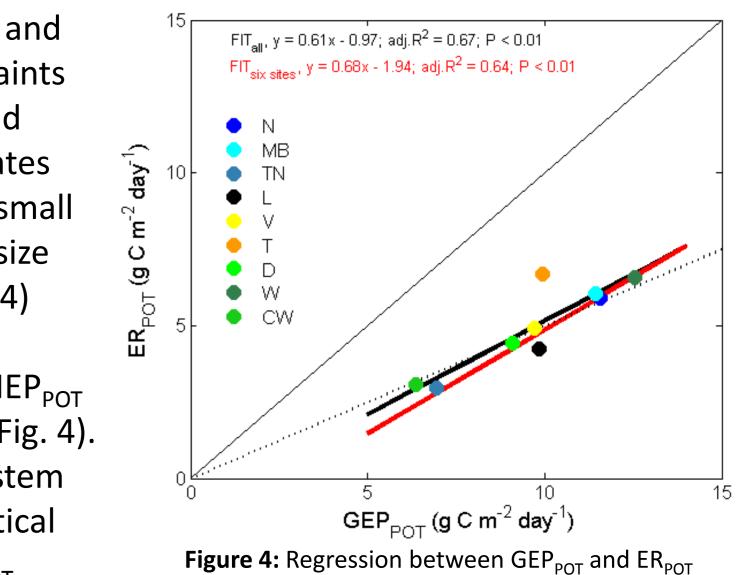
nis poster was presented at the Annual European Geosciences Union (EGU) General Assembly 2013 in Vienna, Austria, 07 – 12 April 2013. Acknowledgements: The study site Neustrian Winistry for Science and Research within the programme Under grant agreements EVK2-CI 2001-00125 and n° 244122, the Austrian Winistry for Science and Research within the programme Under grant agreements EVK2-CI 2001-00125 and n° 244122, the Austrian Winistry for Science and Research within the programme Under grant agreements EVK2-CI 2001-00125 and n° 244122, the Austrian National Science und (FWF) under grant agreements P17560-B03, P19849-B16 and P23267-B16, and the Tyrolean Science Fund under grant agreements UNI-404-33, UNI-404-486 and UNI-404-33, UNI-404-34, UNI-404-3 under the operational program for cross-border cooperation Italy-France (ALCOTRA) 2007-2013. For the Lethbridge grassland site, funding was provided by a Discovery grant from the European Commission through the Project of Energy Terrestrial Carbon Program, grant No. DE-FG03-00ER63013 and DE-SC0005130. The Tojal site received funding from the European Commission through the Project of Energy Terrestrial Carbon Program, grant No. DE-FG03-00ER63013 and DE-SC0005130. The Tojal site received funding from the European Commission through the Project of Energy Terrestrial Carbon Program, grant No. DE-FG03-00ER63013 and DE-SC0005130. The Tojal site received funding from the European Commission through the Project CARBOEUROPE-IP. The study sites Dripsey and Wexford were financed by the Irish Government under the National Development Plan 2000–2006 (Grant No. 2001-CC/CD-(5/7)) and the EC-FP5 "GreenGrass" project and the EC-FP6 "CarboEurope" project.

### **4. Convergence of NEP**POT

# 5. Link of metabolic pathways

Rapid C turnover and metabolic constraints on production and decomposition rates due to relatively small vegetation body size (Brown et al. 2004) may explain the convergence of NEP<sub>POT</sub> in C<sub>3</sub> grasslands (Fig. 4). Moreover, ecosystem traits that are critical controls of NEP<sub>POT</sub>

## 6. Conclusions


NEP<sub>POT</sub> converged within a narrow range suggesting little difference in the net carbon dioxide uptake capacity among  $C_3$ grasslands. Our results indicate a unique feature of C<sub>3</sub> grasslands compared to other terrestrial ecosystems and suggest a state of stability in NEP<sub>POT</sub> due to tightly coupled production and respiration processes. Consequently, the annual NEP<sub>APP</sub> of  $C_3$ grasslands is primarily a function of seasonal and short-term environmental and management constraints, and therefore especially susceptible to changes in future climate patterns and associated adaptation of management practices.



Brown, J.H. et al. (2004). Toward a metabolic theory of ecology. Ecology, 85, 1771-1789.

Gilmanov, T.G. et al. (2010). Productivity, respiration, and light-response parameters of world grassland and agroecosystems derived from flux-tower measurements. Rangeland Ecol. Manag., 63, 16-39.

**Peichl, M**. et al. (2013). Convergence of potential net ecosystem production in C<sub>3</sub> grasslands. Ecology Letters, doi: 10.111/ele.12075



vary much less widely in C<sub>3</sub> grasslands compared to other biomes, which may facilitate the convergence of NEP<sub>POT</sub>.